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CALDERÓN-ZYGMUND OPERATORS ASSOCIATED WITH

SCHRÖDINGER OPERATOR AND THEIR COMMUTATORS ON
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A. AKBULUT1, R. GULIYEV2, I. EKINCIOGLU2,3

Abstract. We establish the boundedness of Calderón-Zygmund operators associated with
Schrödinger operator and their commutators on vanishing generalized Morrey spaces.
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1. Introduction and results

The boundedness of the commutators of singular integrals plays an important role in har-
monic analysis. Commutator integrals arise naturally when one tries to construct a calculus of
singular integral operators to handle differential equations with nonsmooth coefficients.

Recently, the boundedness singular integrals and their commutators with BMO functions on
Schrödinger operators settings have been received a great deal of attention. See for example
[5, 6, 39, 41] and the references therein. In [4, 10, 34, 36, 37, 38], the authors proved the
boundedness of singular integrals related to Schrödinger operators on Rn with certain potentials,
and the boundedness of their commutators with BMO functions is studied.

The classical Morrey spaces were originally introduced by Morrey in [24] to study the local
behavior of solutions to second order elliptic partial differential equations. For the properties
and applications of classical Morrey spaces, we refer the readers to [9, 12, 24, 30]. The classical
version of Morrey spaces is equipped with the norm

∥f∥Mp,λ
:= sup

x∈Rn,r>0
r
−λ

p ∥f∥Lp(B(x,r)),

where 0 ≤ λ ≤ n and 1 ≤ p < ∞. Moreover, various Morrey spaces are defined in the process
of study. V. Guliyev, Mizuhara and Nakai [14, 25, 26] introduced generalized Morrey spaces
Mp,φ(Rn) (see, also [1, 13, 15, 18, 20, 33]).

Let us consider the Schrödinger differential operator

L = −∆+ V (x) on Rn, n ≥ 3,

where V (x) is a nonnegative potential belonging to the reverse Hölder class RHq for q ≥ n/2.

1Department of Mathematics, Kirsehir Ahi Evran University, Turkey
2Department of Mathematics, Kutahya Dumlupinar University, Turkey
3Department of Mathematics, Istanbul Medeniyet University, Turkey
e-mail: ramin@guliyev.com, ismail.ekincioglu@dpu.edu.tr
Manuscript received February 2021.

144



A. AKBULUT, et al.: CALDERÓN-ZYGMUND OPERATORS ... 145

A nonnegative locally Lq integrable function V (x) on Rn is said to belong to RHq, 1 < q ≤ ∞
if there exists C > 0 such that the reverse Hölder inequality 1

|B(x, r)|

∫
B(x,r)

V q(y)dy


1/q

≤

 C

|B(x, r)|

∫
B(x,r)

V (y)dy

 ,

holds for every x ∈ Rn and 0 < r < ∞, where B(x, r) denotes the ball centered at x with radius
r. In particular, if V is a nonnegative polynomial, then V ∈ RH∞.

For x ∈ Rn, the function ρ(x) is defined by

ρ(x) :=
1

mV (x)
= sup

r>0

r :
1

rn−2

∫
B(x,r)

V (y)dy ≤ 1

 .

Obviously, 0 < mV (x) < ∞ if V ̸= 0. In particular, mV (x) = 1 with V = 1 and mV (x) ≈ 1+ |x|
with V (x) = |x|2.

According to [4], the new BMO space BMOθ(ρ) with θ ≥ 0 is defined as a set of all locally
integrable functions b such that

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB|dy ≤ C
(
1 +

r

ρ(x)

)θ
,

for all x ∈ Rn and r > 0, where bB = 1
|B|

∫
B

b(y)dy. A norm for b ∈ BMOθ(ρ), denoted by [b]θ,

is given by the infimum of the constants in the inequalities above. Clearly, BMO ⊂ BMOθ(ρ).
Let θ > 0 and 0 < ν < 1, in view of [23], the Campanato class, associated with Schrödinger

operator Λθ
ν(ρ) consists of the locally integrable functions b such that

1

|B(x, r)|1+ν/n

∫
B(x,r)

|b(y)− bB|dy ≤ C
(
1 +

r

ρ(x)

)θ
, (1)

for all x ∈ Rn and r > 0. A seminorm of b ∈ Λθ
ν(ρ), denoted by [b]θβ, is given by the infimum of

the constants in the inequality above.
Note that if θ = 0, Λθ

ν(ρ) is the classical Campanato space; if ν = 0, Λθ
ν(ρ) is exactly the

space BMOθ(ρ) introduced in [4].
For brevity, in the sequel we use the notations

Aα,V
p,φ (f ;x, r) :=

(
1 +

r

ρ(x)

)α
r−n/p φ(x, r)−1∥f∥Lp(B(x,r)),

and

AW,α,V
p,φ (f ;x, r) :=

(
1 +

r

ρ(x)

)α
r−n/p φ(x, r)−1∥f∥WLp(B(x,r)).

We now present the definition of generalized Morrey spaces (including weak version) associated
with Schrödinger operator, which introduced by V. Guliyev in [17], see also [19].

Definition 1.1. Let φ(x, r) be a positive measurable function on Rn×(0,∞), 1 ≤ p < ∞, α ≥ 0,

and V ∈ RHq, q > 1. We denote by Mα,V
p,φ = Mα,V

p,φ (Rn) the generalized Morrey space associated

with Schrödinger operator, the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

∥f∥
Mα,V

p,φ
= sup

x∈Rn,r>0
Aα,V
p,φ (f ;x, r).
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Also, WMα,V
p,φ = WMα,V

p,φ (Rn) we denote the weak generalized Morrey space associated with
Schrödinger operator, the space of all functions f ∈ WLloc

p (Rn) with

∥f∥
WMα,V

p,φ
= sup

x∈Rn,r>0
AW,α,V
p,φ (f ;x, r) < ∞.

Remark 1.1. (i) When α = 0, and φ(x, r) = r(λ−n)/p, Mα,V
p,φ (Rn) is the classical Morrey space

Lp,λ(Rn) introduced by Morrey in [24];

(ii) When φ(x, r) = r(λ−n)/p, Mα,V
p,φ (Rn) is the Morrey space associated with Schrödinger

operator Lα,V
p,λ (Rn) studied by Tang and Dong in [39];

(iii) The generalized Morrey space associated with Schrödinger operator Mα,V
p,φ (Rn) was in-

troduced and studied by V. Guliyev in [17].

Definition 1.2. The vanishing generalized Morrey space associated with Schrödinger operator

VMα,V
p,φ (Rn) is defined as the spaces of functions f ∈ Mα,V

p,φ (Rn) such that

lim
r→0

sup
x∈Rn

Aα,V
p,φ (f ;x, r) = 0. (2)

The vanishing weak generalized Morrey space associated with Schrödinger operator VWMα,V
p,φ (Rn)

is defined as the spaces of functions f ∈ WMα,V
p,φ (Rn) such that

lim
r→0

sup
x∈Rn

AW,α,V
p,φ (f ;x, r) = 0.

The vanishing spaces VMα,V
p,φ (Rn) and VWMα,V

p,φ (Rn) are Banach spaces with respect to the
norm

∥f∥
VMα,V

p,φ
≡ ∥f∥

Mα,V
p,φ

= sup
x∈Rn,r>0

Aα,V
p,φ (f ;x, r),

∥f∥
VWMα,V

p,φ
≡ ∥f∥

WMα,V
p,φ

= sup
x∈Rn,r>0

Aα,V
W,p,φ(f ;x, r),

respectively.

In the case α = 0, and φ(x, r) = r(λ−n)/p VMα,V
p,φ (Rn) is the vanishing Morrey space VMp,λ

introduced in [40], where applications to PDE were considered.
We refer to [7, 31, 32] for some properties of vanishing generalized Morrey spaces.
From [34, 41], we know some Schrödinger type operators, such as ∇(−∆ + V )−1∇ with

V ∈ Bn, ∇(−∆ + V )−1/2 with V ∈ Bn, (−∆ + V )−1/2∇ with V ∈ Bn, (−∆ + V )iγ with
γ ∈ R and V ∈ Bn/2, and ∇2(−∆ + V )−1 with V is a nonnegative polynomial, are standard
Calderón-Zygmund operators, see [35]. In particular, the kernels K of operators above all satisfy

|K(x, y)| ≤ Ck(
1 + |x−y|

ρ(x)

)N 1

|x− y|n
,

for any N ∈ N. Hence, in the rest of this paper, we always assume that T denotes the above
operators.

Let T be the classical singular integral operator, the commutator [b, T ] generated by T and a
suitable function b is given by

[b, T ](f)(x) = T
(
(b(x)− b)f

)
(x) = b(x)T (f)(x)− T (bf)(x). (3)

A well known result due to Coifman, Rochberg and Weiss [11] states that [b, T ] is bounded
on Lp(Rn) for 1 < p < ∞ when b ∈ BMO(Rn). They also gave a characterization of BMO(Rn)
in virtue of the Lp-boundedness of the above commutator. In 1978, Janson [21] gave some

characterizations of Lipschitz space Λ̇β(Rn) via commutator [b, T ] and proved that b ∈ Λ̇β(Rn)
(0 < β < 1) if and only if [b, T ] is bounded from Lp(Rn) to Lq(Rn) where 1 < p < n/β and
1/p− 1/q = β/n.
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The fractional integral associated with L is defined by

IL
β f(x) = L−β/2f(x) =

∞∫
0

e−tL(f)(x) tβ/2−1dt,

for 0 < β < n. Note that, if L = −△ is the Laplacian on Rn, then IL
β is the Riesz potential Iβ,

that is

Iβf(x) =

∫
Rn

f(y)

|x− y|n
dy.

When b ∈ BMO, Chanillo proved in [8] that [b, Iβ] is bounded from Lp(Rn) to Lq(Rn) with
1/q = 1/p − β/n, 1 < p < n/β. When b belongs to the Campanato space Λν , 0 < ν < 1,
Paluszynski in [29] showed that [b, Iβ] is bounded from Lp(Rn) to Lq(Rn) with 1/q = 1/p− (β+

ν)/n, 1 < p < n/(β + ν). When b ∈ BMOθ(ρ), Bui in [6] obtained the boundedness of [b, IL
β ]

from Lp(Rn) to Lq(Rn) with 1/q = 1/p− β/n, 1 < p < n/β.
It is well known that the boundedness of the standard Calderón-Zygmund operators and

their commutators have been established on the class generalized Morrey spaces (see [15, 25, 26]).
Hence, it will be an interesting question whether we can establish the boundedness of Schrödinger
type operators on the vanishing generalized Morrey spaces related to certain nonnegative po-
tentials (see [10, 17, 19, 22, 27, 28, 39]). The main purpose of this paper is to answer the above
question. More precisely, we obtain the following results.

Theorem 1.1. Let V ∈ Bn/2, α ≥ 0, 1 ≤ p < ∞ and φ1, φ2 ∈ Ωα,V
p,1 satisfies the conditions

cδ :=

∞∫
δ

sup
x∈Rn

φ1(x, t)
dt

t
< ∞, (4)

for every δ > 0, and

∞∫
r

ess inf
t<s<∞

φ1(x, s)s
n
p

t
n
p

dt

t
≤ Cφ2(x, r), (5)

where C does not depend on x and r. Then the operator T is bounded on VMα,V
p,φ1 to VMα,V

p,φ2 for

p > 1 and from VMα,V
1,φ1

to WVMα,V
1,φ2

. Moreover, for p > 1

∥Tf∥
VMα,V

p,φ2
≤ C∥f∥

VMα,V
p,φ1

,

and for p = 1

∥Tf∥
WVMα,V

1,φ2

≤ C∥f∥
VMα,V

1,φ1

,

where C does not depend on f .

Theorem 1.2. Let V ∈ Bn/2, b ∈ BMOθ(ρ), α ≥ 0, 1 ≤ p < ∞ and φ1, φ2 ∈ Ωα,V
p,1 satisfies the

conditions

∞∫
r

(
1 + ln

t

r

)ess inf
t<s<∞

φ1(x, s)s
n
p

t
n
p

dt

t
≤ Cφ2(x, r), (6)

where C does not depend on x and r,

lim
r→0

ln 1
r

infx∈Rn φ2(x, r)
= 0 (7)
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and

cδ :=

∞∫
δ

(
1 + | ln t|

)
sup
x∈Rn

φ1(x, t)
dt

t
< ∞, (8)

for every δ > 0. If b ∈ BMOθ(ρ), then the operator [b, T ] is bounded from VMα,V
p,φ1 to VMα,V

p,φ2

for p > 1 and from VMα,V
Φ,φ1

to WVMα,V
1,φ2

. Moreover, for p > 1

∥[b, T ](f)∥
VMα,V

p,φ2
≤ C[b]θ∥f∥VMα,V

p,φ1
,

and

∥[b, T ](f)∥
WVMα,V

1,φ2

≤ C[b]θ∥f∥VMα,V
Φ,φ1

,

where Φ(t) = t ln(e+ t), ∥f∥
VMα,V

Φ,φ
= ∥Φ(|f |)∥

VMα,V
1,φ

, and C does not depend on f .

Theorem 1.3. Let V ∈ RHn/2, 0 < ν < 1, b ∈ Λθ
ν(ρ), 1 < p < n/ν, 1/q = 1/p − ν/n, and

φ1 ∈ Ωα,V
p,1 , φ2 ∈ Ωα,V

q,1 satisfies the conditions (4) and

∞∫
r

ess inf
t<s<∞

φ1(x, s)s
n
p

t
n
q

dt

t
≤ Cφ2(x, r), (9)

where C does not depend on x ∈ Rn and r > 0. Then the operator [b, T ] is bounded from VMα,V
p,φ1

to VMα,V
q,φ2 for p > 1 and from VMα,V

1,φ1
to VWMα,V

n
n−ν

,φ2
. Moreover, for p > 1

∥[b, T ](f)∥
VMα,V

q,φ2
≤ C∥f∥

VMα,V
p,φ1

,

and for p = 1

∥[b, T ](f)∥
WVMα,V

n
n−ν ,φ2

≤ C∥f∥
VMα,V

1,φ1

,

where C does not depend on f .

Remark 1.2. Note that, Theorems 1.1 and 1.2 in the case of V ≡ 0 was proved in [16].

In this paper, we shall use the symbol A . B to indicate that there exists a universal positive
constant C, independent of all important parameters, such that A ≤ CB. A ≈ B means that
A . B and B . A.

2. Some Preliminaries

We would like to recall the important properties concerning the function ρ(x).

Lemma 2.1. [34] Let V ∈ RHn/2. For the associated function ρ there exist C and k0 ≥ 1 such
that

C−1ρ(x)
(
1 +

|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ Cρ(x)

(
1 +

|x− y|
ρ(x)

) k0
1+k0 , (10)

for all x, y ∈ Rn.

Lemma 2.2. [2] Suppose x ∈ B(x0, r). Then for k ∈ N we have

1(
1 + 2kr

ρ(x)

)N
. 1(

1 + 2kr
ρ(x0)

)N/(k0+1)
.

We give some inequalities about the new BMO space BMOθ(ρ).



A. AKBULUT, et al.: CALDERÓN-ZYGMUND OPERATORS ... 149

Lemma 2.3. [4] Let 1 ≤ s < ∞. If b ∈ BMOθ(ρ), then( 1

|B|

∫
B

|b(y)− bB|sdy
)1/s

≤ [b]θ

(
1 +

r

ρ(x)

)θ′

,

for all B = B(x, r), with x ∈ Rn and r > 0, where θ′ = (k0+1)θ and k0 is the constant appearing
in (10).

Lemma 2.4. [4] Let 1 ≤ s < ∞, b ∈ BMOθ(ρ), and B = B(x, r). Then( 1

|2kB|

∫
2kB

|b(y)− bB|sdy
)1/s

≤ [b]θk
(
1 +

2kr

ρ(x)

)θ′

,

for all k ∈ N, with θ′ as in Lemma 2.3.

The Lipschitz space, associated with Schrödinger operator (see [23]) which consists of the
functions f satisfying

∥f∥Lipθν(ρ) := sup
x∈Rn, r>0

|f(x)− f(y)|
|x− y|ν

(
1 + |x−y|

ρ(x) + |x−y|
ρ(y)

)θ < ∞.

It is easy to see that this space is exactly the Lipschitz space when θ = 0.
Note that if θ = 0 in (1), Λθ

ν(ρ) is exactly the classical Campanato space; if ν = 0, Λθ
ν(ρ) is

exactly the space BMOθ(ρ); if θ = 0 and ν = 0, it is exactly the John-Nirenberg space BMO.
The following relation between Lipθν(ρ) and Λθ

ν(ρ) were proved in [23, Theorem 5].

Lemma 2.5. [23] Let θ > 0 and 0 < ν < 1. Then following embedding is valid

Λθ
ν(ρ) ⊆ Lipθν(ρ) ⊆ Λ(k0+1)θ

ν (ρ),

where k0 is the constant appearing in Lemma 2.1.

We give some inequalities about the Campanato space, associated with Schrödinger operator
Λθ
ν(ρ).

Lemma 2.6. [23] Let θ > 0 and 1 ≤ s < ∞. If b ∈ Λθ
ν(ρ), then there exists a positive constant

C such that ( 1

|B|

∫
B

|b(y)− bB|sdy
)1/s

≤ C[b]θνr
ν
(
1 +

r

ρ(x)

)θ′

,

for all B = B(x, r), with x ∈ Rn and r > 0, where θ′ = (k0+1)θ and k0 is the constant appearing
in (10).

Let Kβ be the kernel of IL
β . The following result give the estimate on the kernel Kβ(x, y).

Lemma 2.7. [6] If V ∈ RHn/2, then for every N , there exists a constant C such that

|Kβ(x, y)| ≤
C(

1 + |x−y|
ρ(x)

)N

1

|x− y|n−β
. (11)

It is natural, first of all, to find conditions ensuring that the spaces Mα,V
p,φ and VMα,V

p,φ are
nontrivial, that is consist not only of functions equivalent to 0 on Rn.

Lemma 2.8. [2] Let φ(x, r) be a positive measurable function on Rn × (0,∞), 1 ≤ p < ∞,
α ≥ 0, and V ∈ RHq, q ≥ 1.
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(i) If

sup
t<r<∞

(
1 +

r

ρ(x)

)α r
−n

p

φ(x, r)
= ∞ for some t > 0 and for all x ∈ Rn,

then Mα,V
p,φ (Rn) = Θ.

(ii) If

sup
0<r<τ

(
1 +

r

ρ(x)

)α
φ(x, r)−1 = ∞ for some τ > 0 and for all x ∈ Rn,

then Mα,V
p,φ (Rn) = Θ.

Remark 2.1. We denote by Ωα,V
p the sets of all positive measurable functions φ on Rn× (0,∞)

such that for all t > 0,

sup
x∈Rn

∥∥∥(1 + r

ρ(x)

)α r
−n

p

φ(x, r)

∥∥∥
L∞(t,∞)

< ∞, and sup
x∈Rn

∥∥∥(1 + r

ρ(x)

)α
φ(x, r)−1

∥∥∥
L∞(0,t)

< ∞.

For the non-triviality of the space Mα,V
p,φ (Rn) we always assume that φ ∈ Ωα,V

p .

Remark 2.2. [3] We denote by Ωα,V
p,1 the sets of all positive measurable functions φ on Rn ×

(0,∞) such that

inf
x∈Rn

inf
r>δ

(
1 +

r

ρ(x)

)−α
φ(x, r) > 0, for some δ > 0, (12)

and

lim
r→0

(
1 +

r

ρ(x)

)α rn/p

φ(x, r)
= 0.

For the non-triviality of the space VMα,V
p,φ (Rn) we always assume that φ ∈ Ωα,V

p,1 .

Theorem 2.1. [18] Let V ∈ Bn/2, α ≥ 0, 1 ≤ p < ∞ and φ1, φ2 ∈ Ωα,V
p satisfies the condition

(5). Then the operator T is bounded on Mα,V
p,φ1 to Mα,V

p,φ2 for p > 1 and from Mα,V
1,φ1

to WMα,V
1,φ2

.

Theorem 2.2. [18] Let V ∈ Bn/2, α ≥ 0, 1 < p < ∞ and φ1, φ2 ∈ Ωα,V
p satisfies the condition

(6). If b ∈ BMOθ(ρ), then the operator [b, T ] is bounded from Mα,V
p,φ1 to Mα,V

p,φ2 and from Mα,V
Φ,φ1

to WMα,V
1,φ2

.

Theorem 2.3. [3] Let V ∈ Bn/2, α ≥ 0, 1 < p < n/ν, 1/q = 1/p − ν/n and φ1 ∈ Ωα,V
p ,

φ2 ∈ Ωα,V
q satisfies the condition (6). If b ∈ Λθ

ν(ρ), then the operator [b, T ] is bounded from

Mα,V
p,φ1 to Mα,V

q,φ2 and from Mα,V
1,φ1

to WMα,V
n

n−ν
,φ2

.

3. Proof of Theorem 1.1

We first prove the following conclusions

Lemma 3.1. Let 0 < ν < 1, 0 < ν < 1 and b ∈ Λθ
ν(ρ), then the following pointwise estimate

holds: ∣∣[b, T ](f)(x)∣∣ . [b]θν Iν(|f |)(x).
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Proof. Note that

[b, T ](f)(x) = b(x)T (f)(x)− T (bf)(x) =

∫
Rn

[b(x)− b(y)]K(x, y) f(y)dy.

If b ∈ Λθ
ν(ρ), then from Lemma 2.7, we have∣∣[b, T ](f)(x)∣∣ ≤ ∫

Rn

|b(x)− b(y)| |K(x, y)| |f(y)|dy

. [b]θν

∫
Rn

|x− y|ν |K(x, y)| |f(y)|dy = [b]θν Iν(|f |)(x).

�
From Lemma 3.1, we get the following.

Corollary 3.1. Suppose V ∈ RHn/2 and b ∈ Λθ
ν(ρ) with 0 < ν < 1. Let 1 ≤ p < q < ∞ satisfy

1/q = 1/p− ν/n. Then for all f in Lp(Rn) we have

∥[b, T ](f)∥Lq(Rn) . ∥f∥Lp(Rn),

when p > 1, and also

∥[b, T ](f)∥WL n
n−ν

(Rn) . ∥f∥L1(Rn),

when p = 1.

To prove Theorem 1.1, we used the following Guliyev type local estimate, see [18, Theorem
3.1.], see also [13].

Theorem 3.1. Let 1 < p < ∞, then the inequality

∥Tf∥Lp(B(x0,r)) . r
n
p

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
p

dt

t
, (13)

holds for any ball B(x0, r) and for all f ∈ Lloc
p (Rn)

Moreover, for p = 1 the inequality

∥Tf∥WL1(B(x0,r)) . rn
∞∫

2r

∥f∥L1(B(x0,t))

tn
dt

t
,

holds for any ball B(x0, r) and for all f ∈ Lloc
1 (Rn).

We are ready to start the proof of Theorem 1.1. The statement is derived from the estimate
(13). The estimation of the norm of the operator, that is, the boundedness in the non-vanishing
space, immediately follows from by Theorem 2.1. So, we only have to prove that

lim
r→0

sup
x∈Rn

Aα,V
p,φ1

(f ;x, r) = 0 ⇒ lim
r→0

sup
x∈Rn

Aα,V
p,φ2

(Tf ;x, r) = 0, (14)

and

lim
r→0

sup
x∈Rn

Aα,V
1,φ1

(f ;x, r) = 0 ⇒ lim
r→0

sup
x∈Rn

AW,α,V
1,φ2

(Tf ;x, r) = 0. (15)

To show that sup
x∈Rn

(
1 + r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥Tf∥Lp(B(x,r)) < ε for small r, we split the right-

hand side of (13):(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥Tf∥Lp(B(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (16)



152 TWMS J. PURE APPL. MATH., V.13, N.2, 2022

where δ0 > 0 (we may take δ0 > 1), and

Iδ0(x, r) :=

(
1 + r

ρ(x)

)α

φ2(x, r)

δ0∫
r

t
−n

p
−1∥f∥Lp(B(x,t))dt,

and

Jδ0(x, r) :=

(
1 + r

ρ(x)

)α

φ2(x, r)

∞∫
δ0

t
−n

p
−1∥f∥Lp(B(x,t))dt,

and it is supposed that r < δ0. We use the fact that f ∈ VMα,V
p,φ1(Rn) and choose any fixed

δ0 > 0 such that

sup
x∈Rn

(
1 +

t

ρ(x)

)α
φ1(x, t)

−1t−n/p∥f∥Lp(B(x,t)) <
ε

2CC0
,

where C and C0 are constants from (5) and (22). This allows to estimate the first term uniformly
in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0(x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now my be made already by the choice of r sufficiently small.
Indeed, thanks to the condition (12) we have

Jδ0(x, r) ≤ cδ0

(
1 + r

ρ(x)

)α

φ1(x, r)
∥f∥

VMα,V
p,φ1

,

where cδ0 is the constant from (2). Then, by (12) it suffices to choose r small enough such that

sup
x∈Rn

(
1 + r

ρ(x)

)α

φ2(x, r)
≤ ε

2cδ0∥f∥VMα,V
p,φ1

,

which completes the proof of (14).
The proof of (15) is similar to the proof of (14).

4. Proof of Theorem 1.2

Similar to the proof of Theorem 1.2, we used the following Guliyev type local estimate, see
[18, Theorem 4.1.], see also [13].

Theorem 4.1. Let V ∈ RHn/2, b ∈ BMOθ(ρ). If 1 < p < ∞, then the inequality

∥[b, T ](f)∥Lp(B(x0,r)) . [b]θr
n
p

∞∫
2r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
, (17)

holds for any ball B(x0, r) and for all f ∈ Lloc
p (Rn).

Moreover, the inequality

∥[b, T ](f)∥WL1(B(x0,r)) . [b]θ r
n

∞∫
2r

(
1 + ln

t

r

)∥f∥LΦ(B(x0,t))

tn
dt

t
,

holds for any ball B(x0, r) and for all f ∈ Lloc
1 (Rn), where Φ(t) = t ln(e+ t).
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The norm inequality having already been provided by Theorem 2.2, we only have to prove
the implication

lim
r→0

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ1(x, r)

−1r−n/p∥f∥Lp(B(x,r)) = 0

=⇒ lim
r→0

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b, T ](f)∥Lp(B(x,r)) = 0.

To check that

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b, T ](f)∥Lp(B(x,r)) < ε for small r,

we use the estimate (17):

φ2(x, r)
−1r−n/p∥[b, T ](f)∥Lp(B(x,r)) .

[b]θ
φ2(x, r)

∞∫
r

(
1 + ln

t

r

)∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

We take r < δ0, where δ0 will be chosen small enough and split the integration:(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b, T ](f)∥Lp(B(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (18)

where

Iδ0(x, r) :=

(
1 + r

ρ(x)

)α
φ2(x, r)

δ0∫
r

(
1 + ln

t

r

) ∥f∥Lp(B(x0,t))

t
n
p

dt

t

and

Jδ0(x, r) :=

(
1 + r

ρ(x)

)α
φ2(x, r)

∞∫
δ0

(
1 + ln

t

r

) ∥f∥Lp(B(x0,t))

t
n
p

dt

t
.

We choose a fixed δ0 > 0 such that

sup
x∈Rn

(
1 +

r

ρ(x)

)α
φ1(x, r)

−1r−n/p∥f∥Lp(B(x,r)) <
ε

2CC0
, r ≤ δ0,

where C and C0 are constants from (18) and (6), which yields the estimate of the first term
uniform in r ∈ (0, δ0) : sup

x∈Rn
CIδ0(x, r) <

ε
2 , 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0(x, r) ≤
cδ0 + c̃δ0 ln 1

r

φ2(x, r)
∥f∥

Mα,V
p,φ1

,

where cδ0 is the constant from (8) with δ = δ0 and c̃δ0 is a similar constant with omitted logarith-
mic factor in the integrand. Then, by (7) we can choose small r such that supx∈Rn Jδ0(x, r) <

ε
2 ,

which completes the proof.

5. Proof of Theorem 1.3

Similar to the proof of Theorem 1.3, we used the following Guliyev type local estimate, see
[3, Theorem 5.]. In order to prove Theorem 1.3, we need the following

Theorem 5.1. Suppose V ∈ RHn/2, b ∈ Λθ
ν(ρ), θ > 0, 0 < ν < 1. Let 1 ≤ p < q < ∞ satisfy

1/q = 1/p− ν/n then the inequality

∥[b, T ](f)∥Lq(B(x0,r)) . ∥Iν(|f |)∥Lq(B(x0,r)) . r
n
q

∞∫
2r

∥f∥Lp(B(x0,t))

t
n
q

dt

t
, (19)
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holds for any f ∈ Lloc
p (Rn). Moreover, for p = 1 the inequality

∥[b, T ](f)∥WL n
n−ν

(B(x0,r)) . ∥Iν(|f |)∥WL n
n−ν

(B(x0,r)) . rn
∞∫

2r

∥f∥L1(B(x0,t))

tn−ν

dt

t
,

holds for any f ∈ Lloc
1 (Rn).

We are ready to start the proof of Theorem 1.3. The statement is derived from the estimate
(19). The estimation of the norm of the operator, that is, the boundedness in the non-vanishing
space, immediately follows from by Theorem 2.3. So, we only have to prove that

lim
r→0

sup
x∈Rn

Aα,V
p,φ1

(f ;x, r) = 0 ⇒ lim
r→0

sup
x∈Rn

Aα,V
q,φ2

([b, T ](f);x, r) = 0, (20)

and

lim
r→0

sup
x∈Rn

Aα,V
1,φ1

(f ;x, r) = 0 ⇒ lim
r→0

sup
x∈Rn

AW,α,V
1,φ2

([b, T ](f);x, r) = 0. (21)

To show that sup
x∈Rn

(
1 + r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b, T ](f)∥Lq(B(x,r)) < ε for small r, we split the

right-hand side of (19):(
1 +

r

ρ(x)

)α
φ2(x, r)

−1r−n/p∥[b, T ](f)∥Lq(B(x,r)) ≤ C [Iδ0(x, r) + Jδ0(x, r)], (22)

where δ0 > 0 (we may take δ0 > 1), and

Iδ0(x, r) :=

(
1 + r

ρ(x)

)α

φ2(x, r)

δ0∫
r

t
−n

q
−1∥f∥Lp(B(x,t))dt,

and

Jδ0(x, r) :=

(
1 + r

ρ(x)

)α

φ2(x, r)

∞∫
δ0

t
−n

q
−1∥f∥Lp(B(x,t))dt,

and it is supposed that r < δ0. We use the fact that f ∈ VMα,V
p,φ1(Rn) and choose any fixed

δ0 > 0 such that

sup
x∈Rn

(
1 +

t

ρ(x)

)α
φ1(x, t)

−1t−n/p∥f∥Lp(B(x,t)) <
ε

2CC0
,

where C and C0 are constants from (9) and (22). This allows to estimate the first term uniformly
in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0(x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now my be made already by the choice of r sufficiently small.
Indeed, thanks to the condition (12) we have

Jδ0(x, r) ≤ cδ0

(
1 + r

ρ(x)

)α

φ1(x, r)
∥f∥

VMα,V
p,φ1

,

where cδ0 is the constant from (2). Then, by (12) it suffices to choose r small enough such that

sup
x∈Rn

(
1 + r

ρ(x)

)α

φ2(x, r)
≤ ε

2cδ0∥f∥VMα,V
p,φ1

,

which completes the proof of (20).
The proof of (21) is similar to the proof of (20).



A. AKBULUT, et al.: CALDERÓN-ZYGMUND OPERATORS ... 155

6. Conclusion

In this paper, we have studied the boundedness of Calderón-Zygmund operators T associated
with Schrödinger operator and their commutators [b, T ] with b ∈ BMOθ(ρ) or b ∈ Λθ

ν(ρ) on

vanishing generalized Morrey spaces VMα,V
p,φ (Rn) related to Schrödinger operator.
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