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Abstract. In this paper, by using the fixed point theory and the technique relying on the

concept of measure of noncompactness in Fréchet spaces, we prove some existence and Ulam–

Hyers–Rassias stability results for some Hilfer and Hilfer–Hadamard fractional differential equa-

tions.
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1. Introduction

Fractional calculus is a branch of classical mathematics, which deals with the generaliza-

tion of operations of differentiation and integration to fractional order. Fractional differential

equations have recently been applied in various areas of engineering, mathematics, physics and

bio-engineering, and other applied sciences [15, 34]. For some fundamental results in the theory

of fractional calculus and fractional differential equations we refer the reader to the monographs

[4, 5, 6, 21, 30, 38], the papers [3, 7, 8, 24, 31, 32, 33] and the references therein. Recently, consid-

erable attention has been given to the existence of solutions of initial and boundary value prob-

lems for fractional differential equations with Hilfer fractional derivative; [12, 13, 15, 19, 35, 37],

and the references therein.

The stability of functional equations was originally raised by [36] and by [16]. Thereafter,

this type of stability is called the Ulam–Hyers stability. In [27] was provided a remarkable

generalization of the Ulam–Hyers stability of mappings by considering variables. The concept of

stability for a functional equation arises when we replace the functional equation by an inequality

which acts as a perturbation of the equation. Considerable attention has been given to the study

of the Ulam–Hyers and Ulam–Hyers–Rassias stability of all kinds of functional equations; one

can see the monographs [6, 17], the papers [1, 2, 3, 7, 8, 23, 28, 29] and discussed the Ulam–Hyers

stability for operatorial equations and inclusions. More details from historical point of view, and

recent developments of such stabilities are reported in [18, 28].

Recently, in [10, 11] the authors applied the measure of noncompactness to some classes of

functional integral equations in Fréchet spaces. Motivated by the above papers, we discuss
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the existence and the Ulam stability of solutions for the following problem of Hilfer fractional

differential equations of the form
(Dα,β

0 u)(t) = f(t, u(t)); t ∈ R+ := [0,+∞),

(I1−γ
0 u)(0) = ϕ,

(1)

where α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ, T > 0, ϕ ∈ E, f : R+ × E → E is a

given function, E is a real (or complex) Banach space with a norm ∥ · ∥, I1−γ
0 is the left-sided

mixed Riemann–Liouville integral of order 1−γ, and Dα,β
0 is the generalized Riemann–Liouville

derivative operator of order α and type β, introduced by Hilfer in [15].

Next, we consider the following problem of Hilfer–Hadamard fractional differential equations

of the form 
(HDα,β

1 u)(t) = g(t, u(t)); t ∈ [1,∞),

(HI1−γ
1 u)(1) = ϕ0,

(2)

where α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ, T > 1, ϕ0 ∈ E, g : [1,∞) × E → E is a given

function, HI1−γ
1 is the left-sided mixed Hadamard integral of order 1 − γ, and HDα,β

1 is the

Hilfer–Hadamard fractional derivative of order α and type β.

This paper initiates the use of the measure of noncompactness in Fréchet spaces for the Ulam

stability of problems (1) and (2).

2. Preliminaries

Let C be the Banach space of all continuous functions v from I := [0, T ]; T > 0 into E with

the supremum (uniform) norm

∥v∥∞ := sup
t∈I

∥v(t)∥.

As usual, AC(I) denotes the space of absolutely continuous functions from I into E. By L1(I),

we denote the space of Bochner-integrable functions v : I → E with the norm

∥v∥1 =
T∫
0

|v(t)|dt.

By Cγ(I) and C1
γ(I), we denote the weighted spaces of continuous functions defined by

Cγ(I) = {w : (0, T ] → E : t1−γw(t) ∈ C},

with the norm

∥w∥Cγ := sup
t∈I

|t1−γw(t)|,

and

C1
γ(I) = {w ∈ C :

dw

dt
∈ Cγ},

with the norm

∥w∥C1
γ
:= ∥w∥∞ + ∥w′∥Cγ .

Let C(R+) be the Fréchet space of all continuous functions v from R+ into E, equipped with

the family of seminorms

∥v∥n = sup
t∈[0,n]

∥v(t)∥; n ∈ N.
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In what follows, we will work in the weighted Fréchet space X := Cγ(R+) of continuous functions

defined by

X = {w : (0,∞) → E : t1−γw(t) ∈ C(R+)},
equipped with the family of seminorms

∥v∥n = sup
t∈[0,n]

∥t1−γv(t)∥; n ∈ N,

and the distance

d(u, v) =

∞∑
n=1

2−n ∥u− v∥n
1 + ∥u− v∥n

; u, v ∈ X.

Definition 2.1. A nonempty subset B ⊂ X is said to be bounded if

sup
v∈X

∥v∥n < ∞; for n ∈ N.

We recall the following definition of the notion of a sequence of measures of noncompactness

[12, 13].

Definition 2.2. Let MX be the family of all nonempty and bounded subsets of a Fréchet

space X. A family of functions {µn}n∈N where µn : MX → [0,∞) is said to be a family of

measures of noncompactness in the real Fréchet space X if it satisfies the following conditions

for all B,B1, B2 ∈ MX :

(a) {µn}n∈N is full, that is: µn(B) = 0 for n ∈ N if and only if B is precompact,

(b) µn(B1) ≤ µn(B2) for B1 ⊂ B2 and n ∈ N,
(c) µn(ConvB) = µn(B) for n ∈ N,
(d) If {Bi}i=1,··· is a sequence of closed sets from MX such that Bi+1 ⊂ Bi; i = 1, · · · and if

limi→∞ µn(Bi) = 0, for each n ∈ N, then the intersection set B∞ := ∩∞
i=1Bi is nonempty.

Some Properties

(e) We call the family of measures of noncompactness {µn}n∈N to be homogeneous if µn(λB) =

|λ|µn(B); for λ ∈ R and n ∈ N.
(f) If the family {µn}n∈N satisfied the condition µn(B1∪B2) ≤ µn(B1)+µn(B2), for n ∈ N,

it is called subadditive.

(g) It is sublinear if both conditions (e) and (f) hold.

(h) We say that the family of measures {µn}n∈N has the maximum property if

µn(B1 ∪B2) = max{µn(B1), µn(B2)},

(i) The family of measures of noncompactness {µn}n∈N is said to be regular if if the condi-

tions (a), (g) and (h) hold; (full sublinear and has maximum property).

Example 2.1. For B ∈ MX , x ∈ B, n ∈ N and ϵ > 0, let us denote by ωn(x, ϵ) for n ∈ N;
the modulus of continuity of the function x on the interval [0, n]; that is,

ωn(x, ϵ) = sup{|x(t)− x(s)| : t, s ∈ [0, n], |t− s| ≤ ϵ}.

Further, let us put

ωn(B, ϵ) = sup{ωn(x, ϵ) : x ∈ B},
ωn
0 (B) = lim

ϵ→0+
ωn(B, ϵ),

ᾱn(B) = sup
t∈[0,n]

α(B(t)) := sup
t∈[0,n]

α({x(t) : x ∈ B}),

and

βn(B) = ωn
0 (B) + ᾱn(B).
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The family of mappings {βn}n∈N where βn : MX → [0,∞), satisfies the conditions (a)-(d) from

Definition 2.2.

Now, we give some results and properties of fractional calculus.

Definition 2.3. [5, 21, 30] The left-sided mixed Riemann–Liouville integral of order r > 0 of

a function w ∈ L1(I) is defined by

(Ir0w)(t) =
1

Γ(r)

t∫
0

(t− s)r−1w(s)ds; for a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ) =

∞∫
0

tξ−1e−tdt; ξ > 0.

Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir0w ∈ C, and

(Ir10 Ir20 w)(t) = (Ir1+r2
0 w)(t); for a.e. t ∈ I.

Definition 2.4. [5, 21, 30] The Riemann–Liouville fractional derivative of order r ∈ (0, 1] of

a function w ∈ L1(I) is defined by

(Dr
0w)(t) =

(
d

dt
I1−r
0 w

)
(t)

=
1

Γ(1− r)

d

dt

t∫
0

(t− s)−rw(s)ds; for a.e. t ∈ I.

Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(I). Then the following expression leads to the left

inverse operator as follows.

(Dr
0I

r
0w)(t) = w(t); for all t ∈ (0, T ].

Moreover, if I1−r
0 w ∈ C1

1−γ(I), then the following composition is proved in [30]

(Ir0D
r
0w)(t) = w(t)− (I1−r

0 w)(0+)

Γ(r)
tr−1; for all t ∈ (0, T ].

Definition 2.5. [5, 21, 30] The Caputo fractional derivative of order r ∈ (0, 1] of a function

w ∈ L1(I) is defined by

(cDr
0w)(t) =

(
I1−r
0

d

dt
w

)
(t)

=
1

Γ(1− r)

t∫
0

(t− s)−r d

ds
w(s)ds; for a.e. t ∈ I.

In [15], Hilfer studied applications of a generalized fractional operator having the Riemann–

Liouville and the Caputo derivatives as specific cases (see also [19, 35].

Definition 2.6. (Hilfer derivative). Let α ∈ (0, 1), β ∈ [0, 1], w ∈ L1(I), I
(1−α)(1−β)
0 ∈

AC(I). The Hilfer fractional derivative of order α and type β of w is defined as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I
(1−α)(1−β)
0 w

)
(t); for a.e. t ∈ I. (3)
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Some Properties. Let α ∈ (0, 1), β ∈ [0, 1], γ = α+ β − αβ, and w ∈ L1(I).

1. The operator (Dα,β
0 w)(t) can be written as

(Dα,β
0 w)(t) =

(
I
β(1−α)
0

d

dt
I1−γ
0 w

)
(t) =

(
I
β(1−α)
0 Dγ

0w
)
(t); for a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0, 1], γ ≥ α, γ > β, 1− γ < 1− β(1− α).

2. The generalization (3) for β = 0, coincides with the Riemann–Liouville derivative and for

β = 1 with the Caputo derivative.

Dα,0
0 = Dα

0 , and Dα,1
0 = cDα

0 .

3. If D
β(1−α)
0 w exists and in L1(I), then

(Dα,β
0 Iα0 w)(t) = (I

β(1−α)
0 D

β(1−α)
0 w)(t); for a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I
1−β(1−α)
0 w ∈ C1

γ(I), then

(Dα,β
0 Iα0 w)(t) = w(t); for a.e. t ∈ I.

4. If Dγ
0w exists and in L1(I), then

(Iα0 D
α,β
0 w)(t) = (Iγ0D

γ
0w)(t) = w(t)− I1−γ

0 (0+)

Γ(γ)
tγ−1; for a.e. t ∈ I.

Corollary 2.1. Let h ∈ Cγ(I). Then the Cauchy problem
(Dα,β

0 u)(t) = h(t); t ∈ I,

(I1−γ
0 u)(t)|t=0 = ϕ,

has the following unique solution

w(t) =
ϕ

Γ(γ)
tγ−1 + (Iα0 h)(t).

From the above corollary, we conclude with the following lemma.

Lemma 2.1. Let f : I × E → E be such that f(·, u(·)) ∈ Cγ for any u ∈ Cγ . Then problem

(1) is equivalent to the problem of the solutions of the integral equation

u(t) =
ϕ

Γ(γ)
tγ−1 + (Iα0 f(·, u(·)))(t).

Now, we consider the Ulam stability for the problem (1). Let ϵ > 0 and Φn : [0, n] → [0,∞)

for n ∈ N be a continuous function. We consider the following inequalities

∥(Dα,β
0 u)(t)− f(t, u(t))∥ ≤ ϵn; t ∈ [0, n]. (4)

∥(Dα,β
0 u)(t)− f(t, u(t))∥ ≤ Φn(t); t ∈ [0, n]. (5)

∥(Dα,β
0 u)(t)− f(t, u(t))∥ ≤ ϵnΦn(t); t ∈ [0, n]. (6)

Definition 2.7. [5, 28] The problem (1) is Ulam–Hyers stable if there exists a real number

cn,f > 0; n ∈ N such that for each ϵ > 0 and for each solution u ∈ X of the inequality (4) there

exists a solution v ∈ X of (1) with

∥u(t)− v(t)∥ ≤ ϵcn,f ; t ∈ [0, n].
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Definition 2.8. [5, 28] The problem (1) is generalized Ulam–Hyers stable if there exists

cn,f ∈ C([0,∞), [0,∞)) with cn,f (0) = 0 such that for each ϵn > 0 and for each solution u ∈ X

of the inequality (4) there exists a solution v ∈ X of (1) with

∥u(t)− v(t)∥ ≤ cn,f (ϵn); t ∈ [0, n].

Definition 2.9. [5, 28] The problem (1) is Ulam–Hyers–Rassias stable with respect to Φn if

there exists a real number cn,f,Φn > 0 such that for each ϵn > 0 and for each solution u ∈ X of

the inequality (6) there exists a solution v ∈ X of (1) with

∥u(t)− v(t)∥ ≤ ϵncn,f,ΦnΦn(t); t ∈ [0, n].

Definition 2.10. [5, 28] The problem (1) is generalized Ulam–Hyers–Rassias stable with

respect to Φn if there exists a real number cn,f,Φn > 0 such that for each solution u ∈ X of the

inequality (5) there exists a solution v ∈ X of (1) with

∥u(t)− v(t)∥ ≤ cn,f,ΦnΦn(t); t ∈ [0, n].

Remark 2.1. It is clear that

(i) Definition 2 ⇒ Definition 2,

(ii) Definition 2 ⇒ Definition 2,

(iii) Definition 2 for Φ(·) = 1 ⇒ Definition 2.

One can have similar remarks for the inequalities (4) and (6).

Lemma 2.2. [9] If Y is a bounded subset of Fréchet space X, then for each ϵ > 0, there is a

sequence {yk}∞k=1 ⊂ Y such that

µn(Y ) ≤ 2µn({yk}∞k=1) + ϵ; for n ∈ N.

Lemma 2.3. [22] If {uk}∞k=1 ⊂ L1(I) is uniformly integrable, then µn({uk}∞k=1) is measurable

for n ∈ N, and

µn


t∫

0

uk(s)ds


∞

k=1

 ≤ 2

t∫
0

µn({uk(s)}∞k=1)ds,

for each t ∈ [0, n].

Definition 2.11. Let Ω be a nonempty subset of a Fréchet space X, and let A : Ω → X be

a continuous operator which transforms bounded subsets of onto bounded ones. One says that

A satisfies the Darbo condition with constants (kn)n∈N with respect to a family of measures of

noncompactness {µn}n∈N, if
µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N.
If kn < 1; n ∈ N then A is called a contraction with respect to {µn}n∈N.

In the sequel we will make use of the following generalization of the classical Darbo fixed

point theorem for Fréchet spaces.

Theorem 2.1. [10, 11] Let Ω be a nonempty, bounded, closed, and convex subset of a Fréchet

space F and let V : Ω → Ω be a continuous mapping. Suppose that V is a contraction with

respect to a family of measures of noncompactness {µn}n∈N. Then V has at least one fixed point

in the set Ω.

We recall Gronwall’s lemma for singular kernels.
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Lemma 2.4.(Gronwall lemma) [Lemma 7.1.1, [14]] Let υ : I → [0,∞) be a real function and

ω(t) be a measurable, nonnegative and locally integrable function on I. If there are constants

c > 0 and 0 < α < 1 such that

υ(t) ≤ ω(t) + c

t∫
0

υ(s)

(t− s)α
ds,

then there exists a constant δ = δ(α) such that

υ(t) ≤ ω(t) + δc

t∫
0

ω(s)

(t− s)α
ds,

for every t ∈ I.

3. Hilfer fractional differential equations in Fréchet spaces

In this section, we are concerned with the existence and the generalized Ulam–Hyers–Rassias

stability of our problem (1).

Definition 3.1. By a solution of the problem (1) we mean a measurable function u ∈ X

that satisfies the condition (I1−γ
0 u)(0+) = ϕ, and the equation (Dα,β

0 u)(t) = f(t, u(t)) on R+.

The following hypotheses will be used in the sequel.

(H1) The function t 7→ f(t, u) is measurable on I for each u ∈ E, and the function u 7→ f(t, u)

is continuous on E for a.e. t ∈ R+,

(H2) There exists a continuous function p : R+ → [0,∞) such that

∥f(t, u)− f(t, v)∥ ≤ p(t)∥u− v∥
1 + ∥u− v∥

; for a.e. t ∈ R+, and each u, v ∈ E,

(H3) For each bounded and measurable set B ⊂ E and for each t ∈ R+, we have

µ(f(t, B)) ≤ p(t)µ(B).

(H4) For any n ∈ N, there exists λΦn > 0 such that for each t ∈ [0, n], we have

(Iα0 Φn)(t) ≤ λΦnΦn(t).

For each n ∈ N, we set

p∗n = sup
t∈[0,n]

p(t), f∗
n = sup

t∈[0,n]
|f(t, 0)|.

Theorem 3.1. Assume that the hypotheses (H1)− (H3) hold. If for n ∈ N, we have

ℓn :=
4p∗nn

α

Γ(1 + α)
< 1, (7)

where

p∗n = sup
t∈[0,n]

p(t),

then the problem (1) has at least one solution in X. Furthermore, if the hypothesis (H4) holds,

then the problem (1) is generalized Ulam–Hyers–Rassias stable.
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Proof. Consider the operator N : X → X defined by:

(Nu)(t) =
ϕ

Γ(γ)
tγ−1 +

t∫
0

(t− s)α−1 f(s, u(s))

Γ(α)
ds. (8)

Clearly, the fixed points of the operator N are solution of the problem (1).

For each n ∈ N, we set

f∗
n = sup

t∈[0,n]
|f(t, 0)|.

For any n ∈ N, and each u ∈ X and t ∈ [0, n] we have

∥t1−γ(Nu)(t)∥ ≤ ∥ϕ∥
Γ(γ)

+
t1−γ

Γ(α)

t∫
0

(t− s)α−1∥f(s, u(s))∥ds

≤ ∥ϕ∥
Γ(γ)

+
t1−γ

Γ(α)

t∫
0

(t− s)α−1∥f(s, 0)∥ds+ t1−γ

Γ(α)

t∫
0

(t− s)α−1∥f(s, u(s))− f(s, 0)∥ds

≤ ∥ϕ∥
Γ(γ)

+
t1−γ

Γ(α)

t∫
0

(t− s)α−1(∥f(s, 0)∥+ p(s))ds ≤ ∥ϕ∥
Γ(γ)

+
(f∗

n + p∗n)T
1−γ

Γ(α)

t∫
0

(t− s)α−1ds

≤ ∥ϕ∥
Γ(γ)

+
(f∗

n + p∗n)n
1−γ+α

Γ(1 + α)
.

Thus

∥N(u)∥n ≤ ∥ϕ∥
Γ(γ)

+
(f∗

n + p∗n)n
1−γ+α

Γ(1 + α)
:= Rn. (9)

This proves that N transforms the ball BRn := B(0, Rn) = {w ∈ X : ∥w∥n ≤ Rn} into itself.

We shall show that the operator N : BR → BR satisfies all the assumptions of Theorem 2.1.

The proof will be given in several steps.

Step 1. N : BR → BR is continuous.

Let {uk}k∈N be a sequence such that uk → u in BRn . Then, for each t ∈ [0, n], we have

∥t1−γ(Nuk)(t)− t1−γ(Nu)(t)∥ ≤ t1−γ

Γ(α)

t∫
0

(t− s)α−1∥f(s, uk(s))− f(s, u(s))∥ds

≤ t1−γ

Γ(α)

t∫
0

(t− s)α−1p(s)∥uk(s)− u(s)∥ds ≤ p∗nT
1−γ

Γ(α)

t∫
0

(t− s)α−1∥uk(s)− u(s)∥ds.

Hence

∥t1−γ(Nuk)(t)− t1−γ(Nu)(t)∥ ≤ p∗nn
1−γ

Γ(α)

t∫
0

(t− s)α−1∥uk(s)− u(s)∥ds. (10)

Since uk → u as k → ∞, then equation (10) implies

∥N(uk)−N(u)∥n → 0 as k → ∞.

Step 2. N(BRn) is bounded.

Since N(BRn) ⊂ BRn and BRn is bounded, then N(BRn) is bounded.
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Step 3. For each bounded subset D of BRn , µn(N(D)) ≤ ℓnµn(D).

From Lemmas 2.2., 2.3., for any D ⊂ BRn and any ϵ > 0, there exists a sequence {uk}∞k=0 ⊂ D,

such that for all t ∈ [0, n], we have

µ((ND)(t)) = µ

 ϕ

Γ(γ)
tγ−1 +

t∫
0

(t− s)α−1 f(s, u(s))

Γ(α)
ds; u ∈ D




≤ 2µ


t∫

0

(t− s)α−1

Γ(α)
f(s, uk(s))ds


∞

k=1

+ ϵ ≤ 4

t∫
0

µ

({
(t− s)α−1

Γ(α)
f(s, uk(s))

}∞

k=1

)
ds+ ϵ

≤ 4

t∫
0

(t− s)α−1

Γ(α)
µ ({f(s, uk(s)}∞k=1) ds+ ϵ ≤ 4

t∫
0

(t− s)α−1

Γ(α)
p(s)µ ({uk(s)}∞k=1) ds+ ϵ

≤

4

t∫
0

(t− s)α−1

Γ(α)
p(s)ds

µ ({uk}∞k=1) + ϵ ≤

4

t∫
0

(t− s)α−1

Γ(α)
p(s)ds

µn(D) + ϵ

≤ 4p∗nn
α

Γ(1 + α)
µn(D) + ϵ ≤ ℓnµn(D) + ϵ.

Since ϵ > 0 is arbitrary, then

µn(N(B)) ≤ ℓnµn(B).

As a consequence of steps 1 to 3 together with Theorem 2.1, we can conclude that N has at

least one fixed point in BRn which is a solution of problem (1).

Step 4. The generalized Ulam–Hyers–Rassias stability.

Let u be a solution of the inequality (5), and let us assume that v is a solution of problem (1).

Thus, we have

v(t) =
ϕ

Γ(γ)
tγ−1 +

t∫
0

(t− s)α−1 f(s, v(s))

Γ(α)
ds.

From the inequality (5), for any n ∈ N and each t ∈ [0, n], we have∥∥∥∥∥∥u(t)− ϕ

Γ(γ)
tγ−1 −

t∫
0

(t− s)α−1 f(s, u(s))

Γ(α)
ds

∥∥∥∥∥∥ ≤ (Iα0 Φ)(t).

From hypotheses (H2) and (H4), for each t ∈ [0, n], we get

∥u(t)− v(t)∥ ≤

∥∥∥∥∥∥u(t)− ϕ

Γ(γ)
tγ−1 −

t∫
0

(t− s)α−1 f(s, u(s))

Γ(α)
ds

∥∥∥∥∥∥
+

t∫
0

(t− s)α−1 ∥f(s, u(s))− f(s, v(s))∥
Γ(α)

ds ≤ (Iα0 Φ)(t) +

t∫
0

(t− s)α−1 p(s)∥u(s)− v(s)∥
Γ(α)

ds

≤ λϕΦ(t) +
p∗n

Γ(α)

t∫
0

(t− s)α−1∥u(s)− v(s)∥ds.
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From Lemma 2.4., there exists a constant δ = δ(α) such that

∥u(t)− v(t)∥ ≤ λϕ[Φ(t) +
δp∗n
Γ(α)

+

t∫
0

(t− s)α−1Φ(s)ds] ≤ [1 + δp∗nλΦ]λϕΦ(t) := cn,f,ΦΦ(t).

Hence, the problem (1) is generalized Ulam–Hyers–Rassias stable.

4. Hilfer–Hadamard fractional differential equations

Now, we are concerned with the existence and the generalized Ulam–Hyers–Rassias stability

of our problem (2).

Set C := C([1, T ]), and denote the weighted space of continuous functions defined by

Cγ,ln([1, T ]) = {w(t) : (ln t)1−γw(t) ∈ C},

with the norm

∥w∥Cγ,ln
:= sup

t∈[1,T ]
∥(ln t)1−rw(t)∥.

Let C([1,∞)) be the Fréchet space of all continuous functions v from [1,∞) into E, equipped

with the family of seminorms

∥v∥n = sup
t∈[1,n]

∥v(t)∥; n ∈ N∗.

Now, we will work in the weighted Fréchet space F := Cγ,ln of continuous functions defined by

F = {w : (1,∞) → E : (ln t)1−γw(t) ∈ C([1,∞))},

equipped with the family of seminorms

∥v∥n = sup
t∈[1,n]

∥(ln t)1−γv(t)∥; n ∈ N∗,

Let us recall some definitions and properties of Hadamard fractional integration and differen-

tiation. We refer to [21] for a more detailed analysis.

Definition 4.1. [21] (Hadamard fractional integral). The Hadamard fractional integral of

order q > 0 for a function g ∈ L1([1, T ]), is defined as

(HIq1g)(x) =
1

Γ(q)

x∫
1

(
ln

x

s

)q−1 g(s)

s
ds,

provided the integral exists.

Example 4.1. Let 0 < q < 1. Then

HIq1 ln t =
1

Γ(2 + q)
(ln t)1+q; for a.e. t ∈ [0, e].

Set

δ = x
d

dx
, q > 0, n = [q] + 1,

and

ACn
δ := {u : [1, T ] → E : δn−1[u(x)] ∈ AC(I)}.

Analogous to the Riemann–Liouville fractional calculus, the Hadamard fractional derivative is

defined in terms of the Hadamard fractional integral in the following way:
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Definition 4.2. [21] (Hadamard fractional derivative). The Hadamard fractional derivative

of order q > 0 applied to the function w ∈ ACn
δ is defined as

(HDq
1w)(x) = δn(HIn−q

1 w)(x).

In particular, if q ∈ (0, 1], then

(HDq
1w)(x) = δ(HI1−q

1 w)(x).

Example 4.2. Let 0 < q < 1. Then

HDq
1 ln t =

1

Γ(2− q)
(ln t)1−q, for a.e. t ∈ [0, e].

It has been proved (see e.g. Kilbas [[20], Theorem 4.8]) that in the space L1(I), the Hadamard

fractional derivative is the left-inverse operator to the Hadamard fractional integral, i.e.

(HDq
1)(

HIq1w)(x) = w(x).

From Theorem 2.3 of [21], we have

(HIq1)(
HDq

1w)(x) = w(x)− (HI1−q
1 w)(1)

Γ(q)
(lnx)q−1.

Analogous to the Hadamard fractional calculus, the Caputo–Hadamard fractional derivative is

defined in the following way:

Definition 4.3. (Caputo-Hadamard fractional derivative). The Caputo–Hadamard fractional

derivative of order q > 0 applied to the function w ∈ ACn
δ is defined as

(HcDq
1w)(x) = (HIn−q

1 δnw)(x).

In particular, if q ∈ (0, 1], then

(HcDq
1w)(x) = (HI1−q

1 δw)(x).

From the Hadamard fractional integral, the Hilfer–Hadamard fractional derivative (introduced

for the first time in [25]) is defined in the following way:

Definition 4.4. (Hilfer–Hadamard fractional derivative). Let α ∈ (0, 1), β ∈ [0, 1], γ =

α+β−αβ, w ∈ L1(I), and HI
(1−α)(1−β)
1 w ∈ AC1(I). The Hilfer–Hadamard fractional derivative

of order α and type β applied to the function w is defined as

(HDα,β
1 w)(t) =

(
HI

β(1−α)
1 (HDγ

1w)
)
(t)

=
(
HI

β(1−α)
1 δ(HI1−γ

1 w)
)
(t); for a.e. t ∈ [1, T ].

(11)

This new fractional derivative (11) may be viewed as interpolating the Hadamard fractional

derivative and the Caputo–Hadamard fractional derivative. Indeed for β = 0 this derivative re-

duces to the Hadamard fractional derivative and when β = 1, we recover the Caputo–Hadamard

fractional derivative.
HDα,0

1 = HDα
1 , and HDα,1

1 = HcDα
1 .

From Theorem 21 in [26], we concluded the following lemma

Lemma 4.1. Let g : [1, T ] × E → E be such that g(·, u(·)) ∈ Cγ,ln([1, T ]) for any u ∈
Cγ,ln([1, T ]). Then Then problem (2) is equivalent to the following Volterra integral equation

u(t) =
ϕ0

Γ(γ)
(ln t)γ−1 + (HIα1 g(·, u(·)))(t).
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Definition 4.5. By a solution of the problem (2) we mean a measurable function u ∈ Cγ,ln

that satisfies the condition (HI1−γ
1 u)(1+) = ϕ0, and the equation (HDα,β

1 u)(t) = g(t, u(t)) on

[1, T ].

Now we give (without proof) similar existence and Ulam stability results for problem (2). Let

us introduce the following hypotheses:

(H ′
1) The function t 7→ g(t, u) is measurable on [1,∞) for each u ∈ E, and the function

u 7→ g(t, u) is continuous on E for a.e. t ∈ [1,∞),

(H ′
2) There exists a continuous function q : [1,∞) → [0,∞) such that

∥g(t, u)− g(t, v)∥ ≤ q(t)∥u− v∥
1 + ∥u− v∥

; for a.e. t ∈ [1,∞), and each u, v ∈ E,

(H ′
3) For each bounded and measurable set B ⊂ F and for each t ∈ [1,∞), we have

µ(g(t, B)) ≤ q(t)µ(B),

(H ′
4) For any n ∈ N∗, there exists λΦn > 0 such that for each t ∈ [1, n], we have

(HIα1 Φn)(t) ≤ λΦnΦn(t).

Theorem 4.1. Assume that the hypotheses (H ′
1)− (H ′

3) hold. If

ℓ∗n :=
4q∗n(lnn)

α

Γ(1 + α)
< 1, (12)

where q∗n = supt∈[1,n] q(t), then the problem (2) has at least one solution defined on I.

Furthermore, if the hypothesis (H ′
4) holds, then the problem (2) is generalized Ulam–Hyers–

Rassias stable.

5. An example

Let

E = l1 =

{
u = (u1, u2, . . . , uk, . . .),

∞∑
k=1

|uk| < ∞

}
be the Banach space with the norm

∥u∥E =
∞∑
k=1

|uk|.

Consider the Hilfer fractional differential equation of the form
(D

1
2
, 1
2

0 uk)(t) = fk(t, u(t)); t ∈ R+,

(I
1
4
0 uk)(t)|t=0 = (1, 0, . . . , 0, . . .),

(13)

where  fk(t, u) =
t
−1
4 uk(t) sin t

64(1 +
√
t)(1 + ∥u∥E)

; t ∈ (0,∞),

fk(0, u) = 0,

with

f = (f1, f2, . . . , fk, . . .), u = (u1, u2, . . . , uk, . . .), c :=
e3

8
Γ

(
1

2

)
.



114 TWMS J. PURE APPL. MATH., V.10, N.1, 2019

Set α = β = 1
2 , then γ = 3

4 . The hypothesis (H2) is satisfied with p(t) =
t
−1
4 | sin t|

64(1 +
√
t)
; t ∈ (0,∞),

p(0) = 0.

Hence, Theorem 3.1 implies that the problem (13) has at least one solution defined on R+. Also,

the hypothesis (H4) is satisfied with

Φn(t) = e3, λΦn =
1

Γ(1 + α)
; n ∈ N.

Indeed, for each t ∈ [0, n] we get

(Iα0 Φn)(t) ≤ e3

Γ(1 + α)

= λΦnΦn(t).

Consequently, the problem (13) is generalized Ulam–Hyers–Rassias stable.
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for Hadamard fractional integral equations in Fréchet spaces, J. Frac. Calc. Appl., 7(2), pp.1-12.
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