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HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRODINGER
TYPE OPERATOR ON LOCAL GENERALIZED MORREY SPACES

V.S. GULIYEV!Y23 A, AKBULUT*, S. CELIK*, M.N. OMAROVA??3

ABSTRACT. In this paper, we study the boundedness of the higher order Riesz transforms R,
R* and their commutators [b, R], [b, R*] on local generalized Morrey spaces LMZ?,’;/’{’“'O} and
vanishing generalized Morrey spaces VM, ;2/ related to Schrodinger type operator. We find the
sufficient conditions on the pair (¢1, ¢2) which ensures the boundedness of these operators from
one local generalized Morrey space LMg: ("0} to another LM%, (" and from one vanishing

generalized Morrey space VMP"‘,;Y to another VM;"(;/2
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1. INTRODUCTION AND RESULTS

Let us consider the Schrodinger operator
Lo= (=) +V%z) on R, n>5,

where V' is non-negative, V' # 0, and belongs to a reverse Holder class RH, for some g > n/2.
i.e., there exists a constant C such that

1 1/q C
— aq < — d
<|B|/V(y) y) < B|/V(y) y
B B
for every ball B C R™.

Obviously, RH,, C RHy,, if g2 > ¢1. But it is important that the class RH, has a property
of self improvement, that is, if V€ RH,, then V € RH, . for some € > 0. We define the reverse
Hoélder index of V' as qo = sup{q: V € RH,}.

As in [26], for a given potential V' € RH, with ¢ > n/2, we define the auxiliary function

1
p(x) = sup {r >0: ) / V(y)dy < 1}, xz € R"™
B(z,r)

It is well known that 0 < p(x) < oo for any = € R™.

Obviously, 0 < my(z) < oo if V # 0. In particular, my(x) = 1 with V = 1 and my(x) ~
1+ |z| with V(z) = |z|?.

Note that if P(x) is a polynomial and 3 > 0, it is easy to see that V(z) = |P(z)|® belongs to
RH,, for ¢ > n/2 and there exists a constant C' such that V(z) < Cmy (x)? (see [16, 19]).
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According to [4], the new BMO space BMOy(p) with § > 0 is defined as a set of all locally
integrable functions b such that

‘B@“lﬂ”)’ / ’b(y)—bB]dygc<1+p(rx)>0

B(z,r)
for all z € R™ and r > 0, where b = ﬁ [ b(y)dy. A norm for b € BMOy(p), denoted by [b]g,
B

is given by the infimum of the constants in the inequalities above. Clearly, BMO C BMOy(p).

The classical Morrey spaces were originally introduced by Morrey in [20] to study the local
behavior of solutions to second order elliptic partial differential equations. For the properties
and applications of classical Morrey spaces, we refer the readers to [6, 7, 10, 14, 15, 20, 23, 25].
The classical version of Morrey spaces is equipped with the norm

A
1L, = sup 7 ?[|fllL, (B (1)
z€R™, r>0

where 0 < X\ < nand 1 < p < co. The generalized Morrey spaces are defined with r* replaced by
a general non-negative function ¢(z, r) satisfying some assumptions (see, for example, [10, 18, 21]
and etc).

The vanishing Morrey space V' L,, 5 in its classical version was introduced in [28], where appli-
cations to PDE were considered. We also refer to [5] and [22] for some properties of such spaces.
This is a subspace of functions in L, y(R™), which satisfy the condition

A
lim sup t-; f _0
=0 zeRn, 0<t<r ” HLp(B(x7t))

We now present the definition of generalized Morrey spaces (including weak version) related
to Schrodinger operator, which introduced by V. Guliyev in [12].

Definition 1.1. Let p(z,r) be a positive measurable function on R™ x (0,00), 1 < p < oo,
a>0,andV € RHy;, ¢ > 1. We denote by Mﬁj;}’ = Mﬁfz;/(R") the generalized Morrey space
related to Schréodinger operator, the space of all functions f € LéOC(R") with finite quasinorm

r e
fllyjov = sup <1—|——> oz, r —Lp=n/p f )
” HMPW €R >0 ,O(IL') ( ) H HLP(B(;E,T))
Also WMﬁfz,Y = WM&;/ (R™) we denote the weak generalized Morrey space related to Schrodinger
operator,the space of all functions f € WLéOC(]R”) with

ro\Q 1
W hwagzy = s (1 ) o)™l ot < o0

Remark 1.1. (i) When a = 0, and p(z,r) = rA=m/P, Mﬁfgy(R”) is the classical Morrey
space Ly x(R™) introduced by Morrey in [20];

(i) When @(z,r) = rA=m/p, Mﬁfzpv(R”) is the Morrey space related to Schrédinger operator
Lg”;/(R”) studied by Tang and Dong in [27);

(151) When a = 0, Mﬁsz(R”) is the generalized Morrey space My ,(R™) introduced by
Mizuhara and Nakai in [18, 21];

(tv) The generalized Morrey space related to Schrédinger operator MEZPV(R") was introduced
by Guliyev in [12].
For brevity, in the sequel we use the notations
A (fimm) 1= (14 =) 7P o) ]
Dy \J sy : p(x) P, Lyp(B(z,r))

and
a T\ _, _
AV (s r) = (14 =) o) ey e

p(x)
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Definition 1.2. The vanishing generalized Morrey space related to Schréidinger operator
VM&;/(]R") is defined as the spaces of functions f € ME&V(R”) such that

lim sup A (f;x,r) =0. (2)
r—0 rER?
The vanishing weak generalized Morrey space related to Schrodinger operator VWM;,)f;;/(R”)
1s defined as the spaces of functions f € WMﬁfZ,Y(]R”) such that

lim sup QLZVS’OO"V(f;x,T) =0.
r—0 rERM ’

The vanishing spaces V M, ZPV (R™) and VW My, ;2/ (R™) are Banach spaces with respect to the
norm

_ Vi,
HfHVM;’;/ = ”fHMg"ﬂ;/ = zelzlipr>09lg’@ (fa"l:ar)a
HfHVWMD‘»V = HfHWMD‘V = sup Q[Z&pay(f;xa”a
p.e p.e cRn
; , Z€R™,

respectively.

Remark 1.2. (i) When a =0, and p(z,r) = rO—m/P, VMz?fsz(]R”) is the vanishing Morrey
space V Ly \(R™) introduced by Vitanza in [28];

(i) When a =0, VMEZPV(]R”) is the vanishing generalized Morrey space VM, ,(R™) studied
n[1, 24].

(i1i) The vanishing generalized Morrey space related to Schrédinger operator V M, ;;/ (R™)
were studied in [2].

Definition 1.3. Let p(z,7) be a positive measurable function on R™ x (0,00), 1 < p < o0,
a>0,andV € RHy, q > 1. For any fived zo € R™ we denote by LM, Video} LM]?LV’{%}(R”)
the local generalized Morrey space related to Schridinger operator, the space of all functions
fe L]lDOC(R”) with finite norm

= sup A% Y (f; .
HfHLMs,l,Y’{xO} ig% D, (f7 zo, ’f’)

Also W LM, V{IO} = WLM,: V{IO}(]R”) we denote the weak local generalized Morrey space re-

lated to Schmdmger operator,the space of all functions f € WLéOC(R”) with

1 gy pgec vty = Sligglg,foa’v(f;ﬂfo,r) < 00
) r

The local spaces LM, ZPV’{$°}(R”) and W LM, ;,V’{:CO}(R”) are Banach spaces with respect to
the norm

”fHLMO‘vVv{IO} = Sup ng,’;)/(f’ xo, 7"),

1F gy £ pgo vy fsupﬂwav(f 0,7),

respectively.

Remark 1.3. (i) When a =0, and p(z,r) = rO=m/P, LME;X’{JCO}(R”) is the local (central)
Morrey space LM{O} (R™) studied in [3];

(i) When a = 0, LM, V{xO}(R”) is the local generalized Morrey space VM[E:DO}(R") were
introduced by Guliyev in [8], see also [9, 11] etc.

o Vidzo} gnd MY

It is natural, first of all, to find conditions ensuring that the spaces LM, , bl are

nontrivial, that is consist not only of functions equivalent to 0 on R™.
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Lemma 1.1. Let xg € R"™, p(x,r) be a positive measurable function on R™ x (0,00), 1 <p <
oo, >0, andV € RHy, ¢ > 1. If

(03
sup (1 + ) T =oo for some t > 0, (3)
t<r<oo p(.ﬁEO) (,O(ZL'(), 7’)

then LM, ZPV’{xO}(R”) = 0, where O is the set of all functions equivalent to 0 on R".

B3

Proof. Let (4) be satisfied and f be not equivalent to zero. Then || f]|, L(B(zo,t)) > 0, hence

r «
o, x > 1 7) 9
17t = 590 (14225 ) o) 75y e

_n

r [
S wp (145 ) gl
£z 3w (1425 ) " ela, )75

Therefore Hf”LM;“zX’{Io} = 0. -

Lemma 1.2. [2] Let ¢(x,r) be a positive measurable function on R™ x (0,00), 1 < p < o0,
a>0,andV € RHy, g > 1.

() If
roNe rTp
sup (1 + —) =00 for some ¢t >0 and for all z € R", (4)
t<r<oco p() o(x,r)
then ;,)f’ (R™) = ©.
(1) If
sup (1 + L>a o(z,r) "t =00 for some 7 >0 and for all z € R, (5)
0<r<r p(z)

then M;SX(R”) = 0.
Remark 1.4. We denote by QX
(0,00) such that for all t > 0,

ploc the sets of all positive measurable functions ¢ on R™ x

() ol <

Moreover, we denote by Qf,"v the sets of all positive measurable functions ¢ on R™ x (0,00) such
that for allt > 0,

sup
reR™

(1 + p(;)>a #H Loalt,00) < 00, and ms;lel (1 + p(;))ago(m,r)_lH o) < 00.

Remark 1.5. We denote by QO‘ the sets of all positive measurable functions @ on R™ x
(0,00) such that

sup
zeR™

xieann igg (1 + p(;))_aap(x,r) > 0, for some § > 0, (6)
and
a pn/p
r r
li 14+ —— =0. 7
tim (14 555) o) @

For the non- triviality of the spaces LM, V{xO}(R”), Mg (R™) and VMg5) (R™) we always
assume that ¢ € Qp 1oc> P € fo’ and p € Qp |, respectively.

The Riesz transform related to £ = —A 4+ V is defined by Ry = VL2, and its dual is
defined by R} = £7'/2V. The L, boundedness of R and R* have been obtained in [26] by Shen.
Let b € BMOy(p), Bongioanni, Harboure and Salinas in [4] showed that the commutators [b, R1]
and [b, Rj] are also bounded on L,. In [13], was proved that the operators R} and [b, R}] with
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b € BMOy(p) are bounded on Mg (R™) and V Mg:Y (R™). In [2] showed that the Marcinkiewicz
operators /Jf’ and their commutators [b, ,uf] with b € BMOy(p) are bounded on M, ;2/ (R™) and
VMg (R™).

The higher order Riesz transform related to Lo is defined by R = VQE_I/ 2, and its dual is

defined by R* = L, Y292 The L, boundedness of R and R* have been obtained in [16] by Liu
and Dong. Let b € BM Op(p), Llu et al. in [17] showed that the commutators [b, R| and [b, R*]
are also bounded on L,,.

In this paper, we consider the boundedness of the operators R and R* on local generalized

V{mO}(R") generalized Morrey space M. ZX (R™) and vanishing generalized

Morrey space LMp
Morrey space VMﬁf » (R™) related to Schrodinger type operator. When b belongs to the new
BMO function spaces BM Oy(p), we also show that the commutator operators [b, R] and [b, R*|
are bounded on LMI?(,Y{IO}(]R”) oV (R™) and V Mgy (R™).

Our main results are as follows.

Theorem 1.1. Let o € R", V € RH, with n/2 <g<mn,a>0,1/py=2/q —2/n, qo is

the reverse Holder index of V, and 1,02 € Q2  satisfies the condition

D, loc

ess inf 1 (xo, )55 di
/K 2200 — < cop2(w0,7), (8)
tr t
T
where ¢y does not depend on r.

(i) If p = 1, then the operator R is bounded from LMaV{mO} to WLMlo‘;;{xO}. Moreover,
there exists a constant C such that

IRy veor < Uy
(#i) If 1 < p < po, then the operator R is bounded from LM;f;Z’{xO} to LM;;;X’{%}. Moreover,
there exists a constant C such that
IR pgvtear < UL yovion

(m) pro < p < oo, then the operator R* is bounded from LM,?‘@VI{:BO} to LMy, V{m}, where

. Moreover, there exists a constant C' such that
*
(&3 < % .
HR ( )HLMp,lavz = CHfHLMPsle

Corollary 1.1. Let V € RH, withn/2 < q<n, a >0, 1/pg =2/q0 — 2/n, qo is the reverse
Hélder index of V', and @1, @2 € QO"V satisfies the condition

/

Do =5

ess 1nf w1z, S)SP di
/t o< n — < COQOQ(CU,T), (9)
te ¢

T

where cg does not depend on x and r.

(i) If p =1, then the operator R is bounded from MO‘ V to WM%VQ'

(#9) If 1 < p < po, then the operator R is bounded from Mp o1 to M%,‘g

(13i) If pjy < p < o0, then the operator R* is bounded from Mpsx to Mg},‘g, where pfj, = pol

Theorem 1.2. Let g € R", V € RH, with n/2 < ¢ < n, a > 0, 1/py = 2/q0 — 2/n
b€ BMOy(p), qo is the reverse Holder index of V', and 1, @2 € Qz’lv

oc

satisfies the condition

7( t)?issirolf@l( 8)87 gy

1+1In- . — < copa(xo,7), (10)
r tr 3

r
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where ¢y does not depend on x and .
(1) If 1 < p < po, then the commutator operator [b,R] is bounded from LM;X{‘TO} to

LM;,’f;QQ{”"O}. Moreover, there exists a constant C' such that

116; RI(f)

‘LMIiLD‘;{IO} S CHfHLM;’"Zlev{IO}

(it) If p{y < p < oo, then the commutator operator [b, R*] is bounded from LMS,;X’{W} to
LMY and
1, Ry < CIINA o
where C' does not depend on f.
Corollary 1.2. Let V € RH, withn/2 < qg<n, a >0, 1/py =2/q0 —2/n, b € BMOy(p),
qo s the reverse Holder index of V', and 1, ps € Qa’v satisfies the condition

® ess inf 1 (x, s)sp dt

/ (1 +In t) f<s<00 — — < copa(z, 1), (11)
r

tr t

T
where co does not depend on x and r.
(1) If 1 < p < po, then the operator [b, R] is bounded from Mpofzx to Mﬁf;;g.
(it) If p{, < p < oo, then the operator [b, R*| is bounded from M,?f;ovl to Mﬁf%.
Theorem 1.3. Let V € RH, withn/2 <q<n, a >0, 1/py =2/q0 — 2/n, qo is the reverse
Hélder index of V, and 1, @2 € lev satisfies the conditions

o0

dt
cs ::/ sup ¢1(z,t)— < 00 (12)
TER™ 13
for every 6 > 0, and
r dt
/(Pl(xvt)t < CO()OQ('%T)v (13)

T
where Cy does not depend on x € R™ and r > 0.
(i) If 1 < p < po, then the operator R is bounded from VMﬁfszl to VM;,T’%.
(1) If p{, < p < oo, then the operator R* is bounded from VME;X to VMﬁzp‘g.
Theorem 1.4. Let V € RH, withn/2 < q<n,a>0, 1/py=2/q0—2/n, b € BMOgy(p), qo
is the reverse Hélder index of V', and 1, po € lev satisfies the conditions

r dt
/ (1 +1In - )cpl(:x t)T < copa(z, 1), (14)
where ¢y does not depend on x and r,
Inl
1i%'fmr( ):0 (15)
0 B el
and
T dt
/ 1 + |lnt| sup ¢1(x,t)— < 00 (16)
s zeR™ t

for every § > 0.
(1) If 1 < p < po, then the operator [b, R] is bounded from VMﬁfsz; to VM,?:;;;
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(i7) If p{y < p < oo, then the operator [b, R*| is bounded from VM]?,ZX to VM;,X,%.
In this paper, we shall use the symbol A < B to indicate that there exists a universal positive

constant C, independent of all important parameters, such that A < CB. A = B means that
A< Band B S A

2. SOME PRELIMINARIES

We would like to recall the important properties concerning the critical function.
Lemma 2.1. There exists constants C > 0 and Iy > 0 such that

1 r \lo
< —_ .
— / V(y)dy_C<1+p(x)>
B(zr)

Lemma 2.2. [26] Let V € RH, /5. For the associated function p there exist C and ko > 1
such that

- = y[\ o |z — yl\ Tk
C™ () (1+ o ) <oly) < Co)(1+ o ) (17)

for all x,y € R™.
Lemma 2.3. [2] Suppose x € B(zo,r). Then for k € N we have

1 < 1

Cea) (o)™

We give some inequalities about the new BMO space BM Oy(p).
Lemma 2.4. [4] Let 1 < s < oo. If b € BMOg(p), then

(5 B/ )~ butdy) " < (1475

for all B = B(z,r), withx € R™ andr > 0, where 8' = (ko+1)0 and kg is the constant appearing
in (17).
Lemma 2.5. [4] Let 1 < s < oo, b€ BMOgy(p), and B = B(z,r). Then

1 o \1/s 2k \ ¢’
(g [ 1o =bolas) " < plok(1+ )
2+ B
for all k € N, with ¢ as in Lemma 2.4.
Let K* be the kernel of R*, then we have
Lemma 2.6. [4] Let V € RH,, we have the following results
(1) If n/2 < g <, then for every N, there exists a constant C > 0 such that

K (2, 2)] < on(i+ 550" / V2(u)

[ — 2|2 u—2r 2 g2
(z|lz—2|/4)
(ii) When q > n, the term involving V' can be dropped from above formula.
The following results the estimates the L, boundedness of the operators R and R*.
Lemma 2.7. [16] Let V € RH, with n/2 < q<mn, 1/po=2/q0 —2/n.
(1) If 1 < p < po, then the operator R is bounded on L,(R™). Moreover, there exists a constant
C such that

IRz, @y < CllfllL, @)
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(1) If p = 1, then the operator R is bounded from Li(R™) to W Ly(R™). Moreover, there
exists a constant C' such that

IRNNwr, ey < CIfllL, &)

(i7) If py < p < o0, then the operator R* is bounded on L,(R™). Moreover, there exists a
constant C such that

IR*(H)lz, @) < ClfllL, @)

The following results the estimates the L, boundedness of the commutator operators [b, R]
and [b, R*].

Lemma 2.8. [17] Let V € RH, with n/2 < q<mn, 1/po =2/q0 —2/n and b € BMOy(p).

(i) If 1 < p < po, then the commutator operator [b, R] is bounded on L,(R™). Moreover, there
exists a constant C' such that

1o, RI ) 2, mmy < ClS Nz, )

(it) If p{, < p < oo, then the commutator operator [b, R*] is bounded on L,(R™). Moreover,
there exists a constant C' such that

116, RN,y < CUf Nl mry-

We recall a relationship between essential supremum and essential infimum.
Lemma 2.9. [29] Let f be a real-valued nonnegative function and measurable on E. Then

. -1 1
(esxselbgf f (m)) = esas:.es;p )

3. PROOF OF THEOREM 1.1.

To prove Theorem 1.1., we first investigate the following local estimate.
Theorem 3.1. Let V € RH, withn/2 < q<mn and 1/py =2/q0 — 2/n.
(1) If p =1, then the inequality

o [ Ml (Beosy dt
L e s (19)
2r

holds for any f € L'¢(R™) and for any xo € R™, r > 0.
(19) If 1 < p < po, then the inequality

/1L, (Bt dt

HR(f)HLp(B(xo,r)) 5 TP tﬁ n (20)
2r !
holds for any f € LéOC(R”) and for any xro € R™, r > 0.
(i13) If py < p < o0, then the inequality
* ﬂOOHfHL B(zo,t dt
IR (lzy oy S 77 [ 222 (21)

tr t
2r

holds for any f € L;"C(R”) and for any xg € R™, r > 0.

Proof. Since the proofs for the case 1 < p < po and the case p{, < p < oo are very similar, we
only prove the case pj < p < 00.
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For arbitrary xg € R™, set B = B(x,r) and AB = B(zg, A\r) for any A > 0. We write f as
f = fi+ fo, where fi(y) = f(y)xmzo’zr) (y), and X B (ag.2r) denotes the characteristic function of
B(xzg,2r). Then
IR ()L, Baor)) < IR (L, (B@or)) + IR (2 Ly(Bwosr)):-
Since f1 € Lp(R™) and from the boundedness of R* on L,(R"), pj < p < oo it follows that

. T dt
IR ()b S 1Nty S 7 1 eionany [ =57
2r
< [ Wy otaony d )
tr t

2r
To estimate [|R*(f2)||L,(B(x0,2r)) Obverse that z € B, y € (2B)¢ implies Hro—yl <z —y| <
3|zo — y|. Then by Lemma 2.7. for all z € B(zo,r) we have

* * 1
IR*(f2)(z)] < / | K™ (z,y) f(y)ldy < / |+ =\ N |x|f_(y?3||nd
(2B)e (2B)° ( + “p(x) )
. L, Ve
(1+ 2V |z — gy |z —y|nt
(2B)e p() B(y,z—y|/4)
S / Izlo—yl N a:’f%)’\”dy
(2B)c (1 + p(z) ) 0y
X i W, VG
(1+M)N‘x0_y‘n—l 2=yl 1
(2B)° p(z) B(y,|zo—yl/4)
=1+ Is.

By Holder’s inequality and Lemma 2.3. we get
1 £ ()] S
hS—— / Fo— v S T ) > () / 1 ()ldy
) p qj k=1

(1+ 75 e lzo — ¥l (1+ siin
< N/(k - Z / HfHLp B(xo,t) dt
~ 2r 0 t
L+ 75)
1 z
S 2r \N/(ko+1) / HfHLpt(f e % (23)
(1 + p(u’vo)) 2r !

For Iy, by Lemmas 2.1, 2.3. and Holder’s inequality we get

> 1 1 V(z)
< — \"
I2 ~ (2k+17')n_1 ok / ’f(y)’dy / ’Z — y|n_2 dz

N
k=1 (1 - P(I)) ok+1g Bl(zo,28+17)
1 1
: 2Ryt (g 4 2y N/ (ol / FOIB Vi ap,y ) W)Y
p(zo) ok+1pB

(2k+17')n_1 (1 2(1“7“) )N/(ko—l-l) |’fHLp(B(x(),2k+17‘)) ”IQ(VXB(zO,2k+1r))HLp’ (Rn)-
p{Zo
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Since py < p < o0, 1/py = 2/s — 2/n, we can select an appropriate number s such that
1/p" = 2/s —2/n. Note that Zp is bounded from L/5(R"™) to Ly (R"), and V' € RH;, then by

Lemma 2.1. we have

||IQ( XB(a: 2k+17‘) HL (R™) < ” XB 0.2k +1r) HLS/Q (R™)

p’
2/s
— k+1,. s
= |B(x0,2 (B (0. 25717) / Vi(2)dz

B(m0,2’“+1)

el L V(z)dz

Thus we get

o
1
k+1
L) (2 (1+ 2y (VD) Ty (B 2441

k=1 (0)
1 S k1,
S werm 2o T I a2
1+ 5Goy) P
< 1 ||f||Lp Blxo,t)) dt
~ “or \(V/(ko+1)—2lo) 7
(1+p(:c0)) 5 tp

So that 1/p’ =2/s —2/n and s < n.
Combining the estimates for I; and Is we obtain

sup  [R*(f2) ()] < . dt
2€B(z0,7) (1+ p(z;o))(N/(koH) 2lo) J tr t

(zo,t)) dt
]- HfHLp O’ (24)

Taking N > 2lp(ko + 1), then

o0
n €T dt
IR*(f)ll 2, (B(zor)) STP /Hﬂmf(ot))

holds for pg < p < .
Let p = 1. From the weak (1,1) boundedness of T" and (4.6) it follows that:

This completes the proof of Theorem 3.1.

Proof of Theorem 1.1. from Lemma 2.9., we have

1 1
=esssup ——= -
t<s<oo ©1 (an s)sp

n
ess inf 1 (o, 5)s»
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Note the fact that || f[|L,(B(zo,)) 15 @ nondecresing function of ¢, and f € MY, then

(14 55) Iy (B0 (1+ )Hfhp Blan)
= < ess sup
f P t<s<
ess i 1 (a0, )5 D
_ (e )|vu o) )
~ sup o,V {zg}-
0<s<o00 ©1(xg LMyt

Since o > 0, and (1, 2) satisfies the condltion (9), then

Ul _ (- sr) Wt g
t z P
poo P 3 $2££¢N%»>p (1+mm0 &
) Fessinf i )37 g
~ ||f||LM;1pV1’{IO} ¢ o n 7
T (1 T P($0)> te
00 inf n
Sl wm@+r)ﬂ/%$wmwwﬁ
~ LMy p(xo) tv t
'
r —a
< Vi {a (1 + ) x0,7). 26
~ ||f”LMp,4;/1{ o} p($0) (,02( 0 ) ( )

Then by Theorem 3.1. we get

* r @ —-1,.—n/p *
IR Dl et S %EO+;G5)wX%JO r IR (f) |1y (o)

ro\@ yai (Bo.)) dt
fs su (1 + ) z ) r < « T
r>18 p(ﬂ?o) @2( 0 ) tp t HfHLM V{ 0}

2r

4. PROOF OF THEOREM 1.2.

As the proof of Theorem 1.1., it suffices to prove the following result.

Theorem 4.1. Let V € RH, withn/2 <q<n,a>0,1/py=2/q0—2/n and b € BMOy(p).
(i) If 1 < p < po, then the inequality

noo (z0.0)) d
Ry a0y < Bl 7 [ (140 L) L atbtentn & e

tr t
2r

holds for any f € LéOC(R") and for any xo € R™, r > 0.
(13i) If py < p < oo, then the inequality

: - 11, 0.0
110 R Iy ey S Bl 5 [ (14107 ) FEQen) (28)

tv t
2r

holds for any f € LZOC(R”) and for any xo € R™, r > 0.
Proof. Since the proofs for the case 1 < p < py and the case p{, < p < oo are very similar, we
only prove the case p{, < p < cc.

We write f as f = fi1 + fa, where fi(y) = f(y)XB<zo,2r>(y)' Then

1o, R I 2, (B@ory) < N6 RV L, (B@ory) + 10 R L, (Bwo,r))-
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By the boundedness of [b, R*] on L,(R™), p{, < p < co and similar to the estimate of (22) we get

116, RGN L, (B@ory) S Bloll fllL,(Bo.2r))
n T o d

5[()]97“?/( +1In 7~>th (29)
2r

We now turn to deal with the term [|[b, R*|(f2)l|1,(B(zor))- For any given z € B(xo,r) we have
[0, R (f2) ()| < [b(x) = bap| [R*(f2)(@)] + [R*((b — bap) f2) (x)].

By (24) we have

1 r 11|z, (B(zo.t)) dt
sup  [R*(f2)(w)] S - p(Bleo)) &
z€B(xo,r) (1 . p(Qg:O))(N/(ko-&-l) lo) J + t
By Lemma 2.4.,

2r \?
16 = b2l 2, B0y S Plo(1+ p(xo)) '

Then by Lemma 2.3., and taking N > (ko + 1)0 we get

or )e N/ (ko+1)-+Ho W”Lp_wdt

_ * < >
1162 = 2 1R (£l ) S Bl (1 05 e

2r

n 7 €T dt
Sbors [ (1+m ) lnund (30)
2r

Finally, let us estimate [|[R*((b — b2B) f2)llL,(B(xo,r)- BY (18), Lemma 2.2. and 2.3. we have

sup R ((b— bap) fo) ()] < / K (2, 9) (b(y) — bap) F )| dy

x€B(zo,r) (2B)e

S O R VS N [
x 0 — x 0_

(2B)" <1+ Y OR ) (2B)° (” Y OR )

V2
X / %dzdy =J1 + Jo.
|z =y
B(y,lzo—yl|/4)
Note that
/ ]b(y) - b2B|’f(Z/)’d2/ < / \b(y) - b2k+1BHf(y)|dy + [bor+15 — b2B’
2k+1B 2k+1B

2k ¢ n
x / !f(y)!dyS[b}ek(Hp(xo)) )7 [ F Il (Beo2s+1r))-

2k+1B




70 TWMS J. PURE APPL. MATH., V.10, N.1, 2019

Then, by Lemma 2.3. we get

o k a
< [Pl Z oy \ N/ (ko+1) =0’ (ri) P ||fHLp(B($0,2k+1T))
k=1 (1 + p(xo)>
k+1
S (2 & 1Lz, (Bao.sy dt
< o 3K F Uty S o 3ok [ 1t
= k=1 2k

Since 2Fr <t < 281y then k ~ In 1. Thus

p

t HfHLp(B(:Jco 1) dt T £l 2, (B0
? < P 3
E / .z ; N[b]e/(lﬂ )—

tp
2r

Choosing p and § such that p > p, and 1/p/ = 2/5 — 2/n, then

[e.e]

1 1
J2 S

o1 n—1 oky \N/(kot1)
( r) (1_|_ (CCO))

) = basllFWIT(VE, )W)y

ol
—_

X
—

) dt

t

2k+1B
<y ! ! b—b (Vy
~ it (2k+17.)n—1 (1 + %kT))N/(kO-H) X H( - 2B)fHL,;(B(zO,2k+1r))H Q(VXB(IO,2k+1))”Lﬁ'(Rn)'
= p(zo

Since 7y is bounded from L;/5(R") to Ly (R"), and V' € RHz we have

IZ2(Vy

9k+1,\ 21,
e My S @7 (142 )7

XB(=o p(xo)

_ pp
Let v = Pt then

16 = b28) fll Ly (Bo.2t+1ry) S NIz, (B2t +1e) (0 = 028) Fll L., (B (o, 26+11))-

But
11 2k O
- < k+1
1(b = b25) || (Ban 1)) S Dok 121 B <+p(fvo)) '
Then
il [b]ok k1 y—2
J2SZ ok N/(kofl)*lofef(Z ’f’) p||f”Lp(B(m072k+1T))
k=1 (1 + p(fﬁO))
7 NNl Ly (Bo) dt
< 1+In— ) ———>—.
S ]e/< + nr) R t
2r
Thus,
n T 1N 2, (B0t dt
o < #
IR*((b = b28) f2) | La(B(wowy) S [lor /(1“ r) th t

2r

Combining (29), (30) and (31), the proof of Theorem 4.1. is completed.

(31)



V.S. GULIYEV etal: HIGHER ORDER RIESZ TRANSFORMS ... 71

Proof of Theorem 1.2. Since f € LM, V{zo}

we have
o0
/( In )HfHLpnBa:o, ) di
r tr t

2r
o0 n
_ /(1 i) 1 oo, 9 (1) A0
»

r E
(1 t P(fﬂo)) tr
£y ©S8 inf ¢1 (7o, s)s? "
S ”f” a,V,{zqg} / (1 + In 7) t<s<oo dt
LMp,‘Pl r (1 N ) t% "

2r (ZO)

and (@1, 2) satisfies the condition (10), by (26)

5 ossinfoi(zo,s)s

[e.e]

% £ 1 (w0, 8)s?
ro\ @ £ §55 1t e1 (o dt
Wl (14 ) [ (om ) BESTE
NHfHLMp,Z,aV{{ 0}( +p(f£0) / + nT' t; t
T
r -
S gt (12 05) ataos ) (32)

Then from Theorem 4.1. we get

16 R g0

r @ —-1,.—n *
S sw (1+m) a0, 7)) [, RV 2 20

zoER™,r>0

I £11 2, (Bxo,t)) dt

r o
S [blg sup (1—1—7) pa(xo, T 1/(1—1—1 7>—
o zo€R™ r>0 p(zo) ( ) 5 r tr t

S [b]HHfHLM;lleﬁ{IO}

5. PROOF OF THEOREM 1.3.

The statement is derived from the estimate (21). The estimation of the norm of the operator,
that is, the boundedness in the non-vanishing space, immediately follows from by Theorem 1.1.
So we only have to prove that

1% * _
}gr(l)ggseuélﬂgw(f,x ,7)=0,p) <p<oo= }%55591;@(71 (f);x,r)=0 (33)
and
li 1 li oV ; =0. 4
lim SSRELQl 991(f7x r)=0,1<p<py = rgﬂ(l);glglﬂpw(R(f),x,r) 0 (34)

To show that sup (1 + ﬁ)agog(a:,r)_lr_"/pHR*(f)||LP(B(%T)) < ¢ for small r, we split the
TER?
right-hand side of (21):

(1 + p(ic)>a802($,7“)lTn/pHR*(f)”Lp(B(x,r)) < Clls,(x,r) + J5o (2, 7)], (35)
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where Jy > 0 (we may take dp > 1), and

(1 + ﬁ)a %

1 = T
o) 1= 2 [E et
and
p(x) -l
= t
Ty(ar) = 2P [E

00

and it is supposed that r < dy. We use the fact that f € VM, Z,Yl (R™) and choose any fixed
0o > 0 such that

") —1,.-n/p €
1 o) —_—
rekn ( + p(x)) () Pl Ly B < TeeN

where C' and Cj are constants from (13) and (35). This allows to estimate the first term
uniformly in r € (0, dp) :

sup Cls,(z,7) < E, 0<r<do.
zER™ 2
The estimation of the second term now my be made already by the choice of r sufficiently small.
Indeed, thanks to the condition (6) we have

(1+ﬁ)a

<
J(So(xﬂ") = Coy 1(.’1),7") ||fHVM1?,ZX1’

where ¢, is the constant from (2). Then, by (6) it suffices to choose r small enough such that

r o
(1 + m) .
sup <
zeR? 902(1'770 2CUOHf||VMg71pV1

)

which completes the proof of (33).
The proof of (34) is similar to the proof of (33).

6. PROOF OF THEOREM 1.4.

The norm inequality having already been provided by Theorem Corollary 1.2.; we only have
to prove the implication

r @ -1 _n/p =
i s (14 5510 Py =0
. T\ -1..-n/p * —
= lim sup (145 ) o, )P0 R, ey = 0 (36)

To check that

r @ -1,.—n/p *
sup (1) eala ) I R () ey < 2 for smal

we use the estimate (28):

-1..—n/p b. R* < [b]a /OO In < ||f”LpBa70, @
ool ) R D lnteny S Sy [ (1) e

We take r < §p where §p will be chosen small enough and split the integration:

(1 * p(x))f)ésoz(x’r)1rn/pH[b7R*(f)]HLp(B(m,r)) < Cllsy(w,7) + Jsy (x,7)], (37)




V.S. GULIYEV etal: HIGHER ORDER RIESZ TRANSFORMS ... 73

where
1+ —2)% rdo
802(‘%"7‘) r T t; t
and
1+ = ¢ oo ; o
toer = CEIE [ (1 1) Wlitpinny ot
@2(.’1},7") do r tr t

We choose a fixed dg > 0 such that

r « —1_.—n/p &g
1+ —— — <4
f;ﬂ@( + p(x)) o1(z, )" TP\ fll LBy < sccy TS %

where C' and Cj are constants from (37) and (14), which yields the estimate of the first term

uniform in r € (0,4d0) : sup Cls,(x,7) < §, 0 <7 < do.
reR™

For the second term, writing 1 +1In% <1+ [In ¢/ +1n 1, we obtain

sy + C3y In 2

T
QOQ((L',T) HfHM&%?
where c5, is the constant from (16) with § = g and cs, is a similar constant with omitted logarith-

mic factor in the integrand. Then, by (15) we can choose small r such that sup,cgn Js,(z,7) < 5,
which completes the proof.

Js (x,7)

A

7. CONCLUSION

In this paper, we obtain estimates for the higher order Riesz transforms R, R* and their
commutators [b, R], [b, R*] on local generalized Morrey space LM, 2;/ ’{zO}(Rn), generalized Mor-

rey space M, ZX (R™) and vanishing generalized Morrey space V My, ;;/ (R™) related to Schrodinger
type operator.
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