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PARABOLIC NON-SINGULAR INTEGRAL OPERATOR AND ITS

COMMUTATORS ON PARABOLIC VANISHING GENERALIZED

ORLICZ-MORREY SPACES
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Abstract. We obtain the sufficient conditions for the boundedness of the parabolic non-
singular integral operator and its commutators on the parabolic vanishing generalized Orlicz-
Morrey spaces MΦ,φ(Dn+1

+ ) including their weak versions.
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1. Introduction

In connection with elliptic partial differential equations, C. Morrey proposed a weak condition
for the solution to be continuous enough in [37]. Later on, his condition became a family of the
normed spaces which are called Morrey spaces. Although the notion is originally from the partial
differential equations, the space turned out to be important in many branches of mathematics.
Although such spaces allow to describe local properties of functions better than Lebesgue spaces,
they have some unpleasant issues. It is well-known that Morrey spaces are non-separable and
that the usual classes of nice functions are not dense in such spaces. Moreover, various Morrey
spaces are defined in the process of study. Guliyev et al. [16, 36, 38] introduced and study the
boundedness of some classical integral operators in the generalized Morrey spaces Mp,φ(Rn).

It is well-known that the commutator is an important integral operator and it plays a key
role in harmonic analysis. In 1965, Calderón [4, 5] studied a kind of commutators, appearing in
Cauchy integral problems of Lip-line. Let T be a Calderón-Zygmund singular integral operator
and b ∈ BMO(Rn). A celebrated result of Coifman et al. [8] states that the commutator
operator [b, T ]f = T (bf) − b Tf is bounded on Lp(Rn) for 1 < p < ∞. The commutator of
Calderón-Zygmund operators plays an important role in the study of regularity of solutions of
elliptic partial differential equations of second order (see, for example, [6, 7, 10, 20, 21, 34]).

In [9], the generalized Orlicz-Morrey space MΦ,φ(Rn) was introduced to unify Orlicz and
generalized Morrey spaces. Other definitions of generalized Orlicz-Morrey spaces can be found
in [39] and [48]. In words of [24], the generalized Orlicz-Morrey space is the third kind and
the ones in [39] and [48] are the first kind and the second kind, respectively. According to the
examples in [15], one can say that the generalized Orlicz-Morrey spaces of the first kind and the
second kind are different and that second kind and third kind are different. However, we do not
know the relation between the first and the second kind.

Note that, Orlicz-Morrey spaces unify Orlicz and generalized Morrey spaces. We extend
some results on generalized Morrey space in the papers [1, 11, 17, 18, 19, 25, 28] to the case of
Orlicz-Morrey space in [9, 22, 23, 24].
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As based on the results of [17, 18], the following conditions were introduced in [9] (see, also
[22]) for the boundedness of the singular integral operators on MΦ,φ(Rn),

∞∫
r

(
ess inf
t<s<∞

φ1(x, s)

Φ−1
(
s−n

)) Φ−1
(
t−n
)dt
t

≤ C φ2(x, r), (1)

where C does not depend on x and r.
Consider the half-space Rn+1

+ = Rn× (0,∞). For x = (x′, t) ∈ Rn+1
+ , x = (x′′, xn, t) ∈ Dn+1

+ =

Rn−1 × R+ × R+, Dn+1
− = Rn−1 × R− × R+. In the following, besides the standard parabolic

metric ϱ(x) = max(|x′|, |t|1/2) we use the equivalent one ρ(x) =
(

|x′|2+
√

|x′|4+4t2

2

)1/2

introduced

by Fabes and Riviére in [14]. The induced by it topology consists of ellipsoids (parabolic balls)

Er(x) =
{
y ∈ Rn+1 :

|x′ − y′|2

r2
+

|t− τ |2

r4
< 1

}
, |Er| = Crn+2.

It is easy to see that E1(x) and Sn are the unit ball and the unit sphere, respectively, with respect
to the both metrics and ρ(x). On the other hand, the equivalence between the both parabolic
metrics ϱ(x) and ρ(x) follows by the inclusion: for each Er there exist parabolic cylinders C
and C with measure comparable with rn+2 such that C ⊂ Er ⊂ C. In what follows all estimate
obtained over ellipsoids hold true also over parabolic cylinders and we shall use this property
without explicit references.

Let x̃ = (x′′,−xn, t) be the ”reflected point”. The parabolic non-singular integral operator R
is defined by (see [3])

Rf(x) =

∫
Dn+1
+

|f(y)|
ρ(x̃− y)n+2

dy. (2)

The commutators generated by b ∈ L1
loc(D

n+1
+ ) and the operator R are defined by

[b,R]f(x) =

∫
Dn+1
+

b(x)− b(y)

ρ(x̃− y)n+2
f(y) dy.

The operator R and its commutator appear in [3] in connection with boundary estimates for
solutions to parabolic equations.

In [42, 43] we have studied the boundedness of the parabolic non-singular integral operator
R on Orlicz and generalized Orlicz-Morrey spaces, respectively. Quite recently, we have also
studied in [44] the boundedness of the commutator of parabolic non-singular integral operator
[b,R] on parabolic generalized Orlicz-Morrey spaces of the third kind MΦ,φ(Dn+1

+ ) with BMO
functions (see also [12]).

The main purpose of this paper is to find sufficient conditions on general Young function Φ
and functions φ1, φ2 which ensure the boundedness of parabolic non-singular integral operator
R from one parabolic vanishing generalized Orlicz-Morrey spaces VMΦ,φ1(Dn+1

+ ) (definition

see section 2) to another VMΦ,φ2(Dn+1
+ ), from VMΦ,φ1(Dn+1

+ ) to parabolic vanishing weak

generalized Orlicz-Morrey spaces VWMΦ,φ2(Dn+1
+ ) and the boundedness of commutator of the

parabolic non-singular integral operator [b,R] from VMΦ,φ1(Dn+1
+ ) to VMΦ,φ2(Dn+1

+ ).
The following results are the fundamental theorems in this paper:

Theorem 1.1. Let Φ be a Young function with Φ ∈ ∆2. Let also φ1, φ2 ∈ ΩΦ,1 satisfy

cδ :=

∞∫
δ

sup
x∈Dn+1

+

φ1(x, t)
dt

t
< ∞, (3)
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for every δ > 0, and

1

φ2(x, r)

∞∫
r

φ1(x, t)
dt

t
≤ C0, (4)

where C0 does not depend on x ∈ Dn+1
+ and r > 0. Then the parabolic non-singular integral

operator R is bounded from VMΦ,φ1(Rn+1
+ ) to VWMΦ,φ2(Rn+1

+ ). If, in addition, Φ ∈ ∇2, then

the operator R is bounded from VMΦ,φ1(Dn+1
+ ) to VMΦ,φ2(Dn+1

+ ).

Theorem 1.2. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2, b ∈ BMO(Dn+1
+ ). φ1, φ2 ∈ ΩΦ,1

satisfy
∞∫
r

(
1 + ln

t

r

)
φ1(x, t)

dt

t
≤ C0φ2(x, r), (5)

where C0 does not depend on xDn+1
+ and r > 0, and the conditions

lim
r→0

ln 1
r

infx∈Dn+1
+

φ2(x, r)
= 0, (6)

and

cδ :=

∞∫
δ

(1 + | ln t|) sup
x∈Dn+1

+

φ1(x, t)
dt

t
< ∞, (7)

for every δ > 0. Then the commutator of the parabolic non-singular integral operator [b,R] is
bounded from VMΦ,φ1(Dn+1

+ ) to VMΦ,φ2(Dn+1
+ ).

By A . B we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.

2. Definitions and preliminary results

2.1. On Young Functions and Orlicz Spaces. We recall the definition of Young functions.

Definition 2.1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) = ∞.

From the convexity and Φ(0) = 0, it follows that any Young function is increasing. If there
exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young functions
such that

0 < Φ(r) < ∞, for 0 < r < ∞,

will be denoted by Y. If Φ ∈ Y, then Φ is absolutely continuous on every closed interval in [0,∞)
and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.
If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < ∞.

It is well-known that
r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (8)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞), } , r ∈ [0,∞)

∞ , r = ∞.
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A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ kΦ(r)for r > 0,

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy the ∇2-condition,
denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1.

Definition 2.2. (Orlicz Space). For a Young function Φ, the set

LΦ(Rn+1
+ ) =

f ∈ L1
loc(R

n+1
+ ) :

∫
Rn+1
+

Φ(k|f(x)|)dx < ∞ for some k > 0 ,


is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn+1

+ ) = Lp(Rn+1
+ ). If Φ(r) = 0, (0 ≤

r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Rn+1
+ ) = L∞(Rn+1

+ ). The space LΦ
loc(R

n+1
+ ) is defined

as the set of all functions f such that fχE ∈ LΦ(Rn+1
+ ) for all parabolic balls E ⊂ Rn+1

+ .

LΦ(Rn+1
+ ) is a Banach space with respect to the norm

∥f∥LΦ(Rn+1
+ ) = inf

λ > 0 :

∫
Rn+1
+

Φ
( |f(x)|

λ

)
dx ≤ 1

 .

We note that ∫
Rn+1
+

Φ
( |f(x)|
∥f∥LΦ(Rn+1

+ )

)
dx ≤ 1. (9)

The weak Orlicz space

WLΦ(Rn+1
+ ) = {f ∈ L1

loc(R
n+1
+ ) : ∥f∥WLΦ(Rn+1

+ ) < +∞},

is defined by the norm

∥f∥WLΦ(Rn+1
+ ) = inf

{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)

≤ 1
}
.

2.2. Parabolic vanishing generalized Orlicz-Morrey Space. Various versions of general-
ized Orlicz-Morrey spaces were introduced in [39], [48] and [9]. We used the definition of [9]
which runs as follows.

We now define the parabolic generalized Orlicz-Morrey spaces of the third kind. The para-
bolic generalized Orlicz-Morrey space MΦ,φ(Rn+1

+ ) of the third kind is defined as the set of all
measurable functions f for which the norm

∥f∥MΦ,φ(Rn+1
+ ) ≡ sup

x∈Rn+1
+ , r>0

1

φ(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)),

is finite, where E+(x, r) = B(x, r)∩Rn+1
+ . Also by WMΦ,φ(Rn+1

+ ) we denote the weak parabolic

generalized Orlicz-Morrey space of the third kind of all functions f ∈ WLΦ
loc(R

n+1
+ ) for which

∥f∥WMΦ,φ(Rn+1
+ ) = sup

x∈Rn+1
+ ,r>0

φ(x, r)−1Φ−1(|E+(x, r)|−1) ∥f∥WLΦ(E+(x,r)) < ∞,

where WLΦ(E+(x, r)) denotes the weak LΦ-space of measurable functions f for which

∥f∥WLΦ(E+(x,r)) ≡ ∥fχ
E+(x,r)

∥WLΦ(Rn+1
+ ).
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Note that MΦ,φ(Rn+1
+ ) covers many classical function spaces.

Example 2.1. Let 1 ≤ q ≤ p < ∞ and Φ ∈ ∆2 ∩ ∇2. From the following special cases, we
see that our results will cover the Lebesgue space Lp(Rn+1

+ ), the classical parabolic Morrey space

Mp
q (Rn+1

+ ), the parabolic generalized Morrey space Mp,φ(Rn+1
+ ) and the Orlicz space LΦ(Rn+1

+ )
with norm coincidence:

(1) If Φ(t) = tp and φ(t) = t
−n

p , then MΦ,φ(Rn+1
+ ) = Lp(Rn+1

+ ) with norm equivalence.

(2) If Φ(t) = tq and φ(t) = t
−n

p , then MΦ,φ(Rn+1
+ ), which is denoted by Mp

q (Rn+1
+ ), is the

classical parabolic Morrey space.
(3) If Φ(t) = tp, then MΦ,φ(Rn+1

+ ) = Mp,φ(Rn+1
+ ) is the parabolic generalized Morrey space

which were discussed in [17, 36, 38].
(4) If φ(t) = Φ−1(t−n), then MΦ,φ(Rn+1

+ ) = LΦ(Rn+1
+ ), which is beyond the reach of para-

bolic generalized Orlicz-Morrey spaces of the second kind defined in [15] according to an
example constructed in [48].

Other definitions of generalized Orlicz-Morrey spaces can be found in [15, 39, 40, 41]; There-
fore, our definition of generalized Orlicz-Morrey spaces here is named “third kind”.

In the case φ(x, r) =
Φ−1
(
|E+(x,r)|−1

)
Φ−1
(
|E+(x,r)|−λ/n

) , we get the parabolic Orlicz-Morrey space MΦ,λ(Rn+1
+ )

from the parabolic generalized Orlicz-Morrey space MΦ,φ(Rn+1
+ ). We refer to [22, Lemmas 2.8

and 2.9] for more information on the Orlicz-Morrey spaces.
Lemma 2.1. [22, Lemma 2.12] Let Φ be a Young function and φ be a positive measurable

function on Rn+1
+ × (0,∞).

(i) If

sup
t<r<∞

Φ−1(|E+(x, r)|−1)

φ(x, r)
= ∞ for some t > 0 and for all x ∈ Rn+1

+ , (10)

then MΦ,φ(Rn+1
+ ) = Θ.

(ii) If

sup
0<r<τ

φ(x, r)−1 = ∞ for some τ > 0 and for all x ∈ Rn+1
+ , (11)

then MΦ,φ(Rn+1
+ ) = Θ.

Remark 2.1. Let Φ be a Young function. By ΩΦ, we denote the sets of all positive
measurable functions φ on Rn+1

+ × (0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥Φ−1(|E+(x, r)|−1)

φ(x, r)

∥∥∥
L∞(t,∞)

< ∞,

and

sup
x∈Rn

∥∥∥φ(x, r)−1
∥∥∥
L∞(0,t)

< ∞,

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that φ ∈ ΩΦ.

Definition 2.3. (parabolic vanishing generalized Orlicz-Morrey Space) The parabolic vanish-
ing generalized Orlicz-Morrey space VMΦ,φ(Rn+1

+ ) is defined as the space of functions f ∈
MΦ,φ(Rn+1

+ ) such that

lim
r→0

sup
x∈Rn+1

+

1

φ(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)) = 0.

Definition 2.4. (parabolic vanishing weak generalized Orlicz-Morrey Space) The parabolic van-
ishing weak generalized Orlicz-Morrey space VWMΦ,φ(Rn+1

+ ) is defined as the space of functions
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f ∈ WMΦ,φ(Rn+1
+ ) such that

lim
r→0

sup
x∈Rn+1

+

1

φ(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)) = 0.

The vanishing Morrey space VMp,λ(Rn) of the classical Morrey spaces Mp,λ(Rn) was in-
troduced by Vitanza in [49] and applied there to obtain a regularity result for elliptic partial
differential equations. Later in [50] Vitanza proved an existence theorem for a Dirichlet prob-
lem, under weaker assumptions then those introduced by Miranda in [35], and a W 3,2 regularity
result assuming that the partial derivatives of the coefficients of the highest and lower order
terms belong to vanishing Morrey spaces depending on the dimension. Ragusa [46] also proved
a sufficient condition for commutators of fractional integral operators to belong to vanishing
Morrey spaces VMp,λ(Rn+1

+ ). About commutator operators in vanishing Morrey spaces see the
papers [2, 13, 26, 27, 45, 46].

Remark 2.2 By ΩΦ,1, we denote the sets of all positive measurable functions φ on Rn+1
+ ×

(0,∞) such that

lim
r→0

1

Φ−1(r−n−2) infx∈Rn+1
+

φ(x, r)
= 0 (12)

and

inf
x∈Rn+1

+

inf
r>δ

φ(x, r) > 0, for some δ > 0. (13)

For the non-triviality of the space VMΦ,φ(Rn+1
+ ) we always assume that

φ ∈ ΩΦ,1.

The spaces VMΦ,φ(Rn+1
+ ) and WVMΦ,φ(Rn+1

+ ) are Banach spaces with respect to the norms

∥f∥VMΦ,φ ≡ ∥f∥MΦ,φ = sup
x∈Rn+1

+ ,r>0

1

φ(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)),

∥f∥VWMΦ,φ ≡ ∥f∥WMΦ,φ = sup
x∈Rn+1

+ ,r>0

1

φ(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥WLΦ(E+(x,r)),

respectively. The spaces VMΦ,φ(Rn+1
+ ) and VWMΦ,φ(Rn+1

+ ) are closed subspaces of the Banach

spaces MΦ,φ(Rn+1
+ ) and WMΦ,φ(Rn+1

+ ), respectively, which may be shown by standard means.

3. Parabolic non-singular integral operators in the space VMΦ,φ(Dn+1
+ )

For any x = (x′, t) = (x′′, xn, t) ∈ Dn+1
+ define x̃ = (x′′,−xn, t) and recall that x0 = (x′, 0).

Also define E+
r ≡ E+(x0, r) = E(x0, r) ∩ Dn+1

+ , 2E+
r = E+(x0, 2r).

For proving our main results, we need the following estimate, which was proved in [12].

Lemma 3.1. Let R be a parabolic non-singular integral operator, defined by (2), Φ any Young
function, f ∈ LΦ

loc(D
n+1
+ ), be such that

∞∫
1

∥f∥LΦ(E+(x0,t))Φ
−1
(
t−n−2

) dt
t

< ∞, (14)

i) If Φ ∈ ∆2
∩

∇2, then

∥Rf∥LΦ(E+(x0,r)) ≤
C

Φ−1
(
r−n−2

) ∞∫
2r

∥f∥LΦ(E+(x0,t))Φ
−1
(
t−n−2

) dt
t
. (15)
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ii) If Φ ∈ ∆2, then

∥Rf∥WLΦ(E+(x0,r)) ≤
C

Φ−1
(
r−n−2

) ∞∫
2r

∥f∥LΦ(E+(x0,t))Φ
−1
(
t−n−2

) dt
t
, (16)

where the constants are independent of x0, r and f .

By using Lemma 3.1 the following statement was proved in [43], see also [12].
Theorem 3.1. Let R be a parabolic non-singular integral operator, defined by (2), Φ ∈ ∆2

and φ1, φ2 ∈ ΩΦ satisfy the condition

∞∫
r

(
ess inf
t<s<∞

φ1(x, s)

Φ−1
(
s−n−2

)) Φ−1
(
t−n−2

)dt
t

≤ C φ2(x, r), (17)

where C does not depend on x and r.
i) Then the operator R is bounded from MΦ,φ1(Dn+1

+ ) to WMΦ,φ2(Dn+1
+ ) and

∥Rf∥MΦ,φ2 (Dn+1
+ ) ≤ C∥f∥WMΦ,φ1 (Dn+1

+ ),

with constants independent of f.
ii) If Φ ∈ ∇2, then the operator R is bounded from MΦ,φ1(Dn+1

+ ) in MΦ,φ2(Dn+1
+ ) and

∥Rf∥MΦ,φ2 (Dn+1
+ ) ≤ C∥f∥MΦ,φ1 (Dn+1

+ ), (18)

with constants independent of f .
Proof of Theorem 1.1. The statement is derived from Theorem 3.1.
So we only have to prove that

lim
r→0

sup
x∈Dn+1

+

1

φ1(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)) = 0,

⇒ lim
r→0

sup
x∈Dn+1

+

1

φ2(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥Rf∥LΦ(E+(x,r)) = 0, (19)

and

lim
r→0

sup
x∈Dn+1

+

1

φ1(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)) = 0,

⇒ lim
r→0

sup
x∈Dn+1

+

1

φ2(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥Rf∥WLΦ(E+(x,r)) = 0. (20)

In this estimation, we follow some ideas of [47] in such passage to the limit in the case Φ(r) = rp,
but base ourselves on Lemma 3.1.

To show that sup
x∈Dn+1

+

1
φ2(x,r)

Φ−1
(

1
|E+(x,r)|

)
∥Rf∥LΦ(E+(x,r)) < ε for small r, we split the right-

hand side of (15):

φ2(x, r)
−1Φ−1

(
1

|E+(x, r)|

)
∥Rf∥LΦ(E+(x,r)) ≤ C[Iδ(x, r) + Jδ(x, r)], (21)

where δ0 > 0 (we may take δ0 < 1), and

Iδ(x, r) :=
1

φ2(x, r)

 δ0∫
r

φ1(x, t)

t
φ1(x, t)

−1 ∥f∥LΦ(E+(x,t))dt

 ,
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and

Jδ(x, r) :=
1

φ2(x, r)

 ∞∫
δ0

φ1(x, t)

t
φ1(x, t)

−1 ∥f∥LΦ(E+(x,t))dt

 ,

and it is supposed that r < δ0. Now we choose any fixed δ0 > 0 such that

sup
x∈Dn+1

+

φ1(x, t)
−1Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)) <

ε

2CC0
,

where C and C0 are constants from (21) and (4). This allows to estimate the first term uniformly
in r ∈ (0, δ0) :

sup
x∈Dn+1

+

CIδ0(x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now may be made already by the choice of r sufficiently
small. Indeed, thanks to the condition (12) we have

Jδ(x, r) ≤ cδ0∥f∥VMΦ,φ

1

φ(x, r)
,

where cδ0 is the constant from (3). Then, by (12) it suffices to choose r small enough such that

sup
x∈Dn+1

+

1

φ(x, r)
≤ ε

2cδ0∥f∥VMΦ,φ

,

which completes the proof of (19).
The proof of (20) is similar to the proof of (19).

�

4. Commutators of non-singular integrals in the space MΦ,φ(Dn+1
+ )

For a function b ∈ BMO define the commutator [b,R]f = bRf −R(bf). Our aim is to show
boundedness of [b,R] in MΦ,φ(Dn+1

+ ). For this goal, we recall some well-known properties of the
BMO functions.

Lemma 4.1. (John-Nirenberg lemma, [31]) Let b ∈ BMO and p ∈ (1,∞). Then for any ball E
there holds  1

|E|

∫
E

|b(y)− bE |pdy

 1
p

≤ C(p)∥b∥∗. (22)

Definition 4.1. A Young function Φ is said to be of upper type p (resp. lower type p) for
some p ∈ [0,∞), if there exists a positive constant C such that, for all t ∈ [1,∞)(resp. t ∈ [0, 1])
and s ∈ [0,∞),

Φ(st) ≤ CtpΦ(s).

Remark 4.1 We know that if Φ is lower type p0 and upper type p1 with 1 < p0 ≤ p1 < ∞,
then Φ ∈ ∆2 ∩ ∇2. Conversely if Φ ∈ ∆2 ∩ ∇2, then Φ is lower type p0 and upper type p1 with
1 < p0 ≤ p1 < ∞ (see [32]).

Before proving the main theorems, we need the following lemma.

Lemma 4.2. [30] Let b ∈ BMO(Dn+1
+ ). Then there is a constant C > 0 such that∣∣∣bE+

r
− bE+

t

∣∣∣ ≤ C∥b∥∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r, and t.
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In the following lemma which was proved in [23] we provide a generalization of the property
(22) from Lp-norms to Orlicz norms.

Lemma 4.3. Let b ∈ BMO(Dn+1
+ ) and Φ be a Young function. Let Φ is lower type p0 and

upper type p1 with 1 ≤ p0 ≤ p1 < ∞, then

∥b∥∗ ≈ sup
x∈Dn+1

+ ,r>0

Φ−1
(
r−n−2

) ∥∥b(·)− bE+(x,r)

∥∥
LΦ(E+(x,r))

.

Remark 4.4. Note that Lemma 4.3 for the variable exponent Lebesgue space Lp(·) case was
proved in [29].

Definition 4.2 Let Φ be a Young function. Let

aΦ := inf
t∈(0,∞)

tΦ′(t)

Φ(t)
, bΦ := sup

t∈(0,∞)

tΦ′(t)

Φ(t)
.

Remark 4.5. It is known that Φ ∈ ∆2 ∩ ∇2 if and only if 1 < aΦ ≤ bΦ < ∞ (See, for example,
[33]).

Remark 4.6. Remark 4.5 and Remark 4.1 show us that a Young function Φ is lower type p0 and
upper type p1 with 1 < p0 ≤ p1 < ∞ if and only if 1 < aΦ ≤ bΦ < ∞.

To estimate the commutator we shall employ the same idea which we used in the proof of
Lemma 3.1 (see [44]).

Lemma 4.4. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2 and b ∈ BMO(Dn+1
+ ). Suppose

that for all f ∈ LΦ
loc(D

n+1
+ ) and r > 0 holds

∞∫
1

(
1 + ln

t

r

)
∥f∥LΦ(E+(x0,t))Φ

−1
(
t−n−2

)dt
t

< ∞. (23)

Then

∥[b,R]f∥LΦ(E+
r ) ≤

C∥b∥∗
Φ−1

(
r−n−2

) ∞∫
2r

(
1 + ln

t

r

)
∥f∥LΦ(E+(x0,t))Φ

−1
(
t−n−2

)dt
t
. (24)

By using Lemma 4.4 the following statement was proved in [44], see also [12].
Theorem 4.1. Let b ∈ BMO(Dn+1

+ ), R be a parabolic non-singular integral operator,
defined by (2), and Φ ∈ ∆2 ∩∇2, φ1, φ2 ∈ ΩΦ satisfy the condition

∞∫
r

(
1 + ln

t

r

)(
ess inf
t<s<∞

φ1(x, s)

Φ−1
(
s−n−2

)) Φ−1
(
t−n−2

)dt
t

≤ C φ2(x, r), (25)

where C does not depend on x and r. Then the operator [b,R] is bounded from MΦ,φ1(Dn+1
+ ) to

MΦ,φ2(Dn+1
+ ) and

∥[b,R]f∥MΦ,φ2 (Dn+1
+ ) ≤ C∥b∥∗ ∥f∥MΦ,φ1(Dn+1

+ ), (26)

with a constant independent of f.
Proof of Theorem 1.2. The proof follows more or less the same lines as for Theorem 3.1,

but now the arguments are different due to the necessity to introduce the logarithmic factor into
the assumptions.
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The norm inequality having already been provided by Theorem 4.1, we only have to prove
the implication

lim
r→0

sup
x∈Dn+1

+

1

φ1(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)) = 0

=⇒ 1

φ2(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥[b,R]f∥LΦ(E+(x,r)) = 0. (27)

To check that

sup
x∈Dn+1

+

1

φ2(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥[b,R]f∥LΦ(E+(x,r)) < ε for small r,

we use the estimate (24):

1

φ2(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥[b,R]f∥LΦ(E+(x,r)) .

∥b∥∗
φ2(x, r)

∞∫
r

(
1 + ln

t

r

)
∥f∥LΦ(B(x0,t))

dt

t
.

We take r < δ0 where δ0 will be chosen small enough and split the integration:

1

φ2(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥[b,R]f∥LΦ(E+(x,r)) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (28)

where

Iδ0(x, r) :=
1

φ2(x, r)

δ0∫
r

(
1 + ln

t

r

)
∥f∥LΦ(E+(x,r))

dt

t

and

Jδ0(x, r) :=
1

φ2(x, r)

∞∫
δ0

(
1 + ln

t

r

)
∥f∥LΦ(E+(x,r))

dt

t
.

We choose a fixed δ0 > 0 such that

sup
x∈Dn+1

+

1

φ1(x, r)
Φ−1

(
1

|E+(x, r)|

)
∥f∥LΦ(E+(x,r)) <

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (28) and (5), which yields, the estimate of the first term
uniform in r ∈ (0, δ0) : sup

x∈Dn+1
+

CIδ0(x, r) <
ε
2 , 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0(x, r) ≤
cδ0 + c̃δ0 ln 1

r

φ2(x, r)
∥f∥MΦ,φ ,

where cδ0 is the constant from (7) with δ = δ0 and c̃δ0 is a similar constant with omitted logarith-
mic factor in the integrand. Then, by (6) we can choose small r such that supx∈Dn+1

+
Jδ0(x, r) <

ε
2 ,

which completes the proof.

�
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5. Conclusion

In this paper, we obtain the sufficient conditions on general Young function Φ and functions
φ1, φ2 which ensure the boundedness of parabolic non-singular integral operator R from one
parabolic vanishing generalized Orlicz-Morrey spaces VMΦ,φ1(Dn+1

+ ) to another VMΦ,φ2(Dn+1
+ ),

from VMΦ,φ1(Dn+1
+ ) to parabolic vanishing weak generalized Orlicz-Morrey spaces VWMΦ,φ2(Dn+1

+ )
and the boundedness of commutator of the parabolic non-singular integral operator [b,R] from
VMΦ,φ1(Dn+1

+ ) to VMΦ,φ2(Dn+1
+ ).
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