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FIBONACCI LENGTH AND SPECIAL AUTOMORPHISMS OF FINITE
(`, m|n, k)-GROUPS

R. GOLAMIE1, H. DOOSTIE2, K. AHMADIDELIR1

Abstract. We study here the Fibonacci length of finitely presented and parametric groups

〈a, b | a` = bm, (ab)n = (ab−1)
k〉 for positive integers `, m, n and k. They are indeed extensions

of (`, m|n, k)-groups of M. Edjvet and R.M. Thomas considered for their finiteness property in

1997. We prove that there are some subclasses of these groups which are non-isomorphc groups

of the same Fibonacci length. More interesting result is that, these lengths are independent

of one of the involved parameters of the groups, and also the lengths involve the Wall number

κ(n). Moreover, the Fibonacci lengths of two homomorphic images of the groups have been

calculated and compared with those of the groups.
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1. Introduction

The 4-parameter groups

G = (`,m|n, k) = 〈a, b | a` = bm = (ab)n = (ab−1)k = 1〉
were studied in 1997 by M. Edjvet and R.M. Thomas (see [10]) where, `,m, n, k ≥ 1, ` ≤ m and
n ≤ k. The study of these groups is a continuation of the study of the Coxeter groups of [5, 6]
and the groups

G = 〈a, b | a` = bm = 1, (ab)n = (ab−1)k〉
and

G = 〈a, b | a` = bm, (ab)n = (ab−1)k〉
considered by H. Doostie, R. Gholamie and R.M. Thomas in 2003 (see [9]). It is shown in [9]
that the group G is finite only in the following cases:

(2, 2|n, k), n ≥ 2; (`,m|2, 2), ` ≥ 4;
(3, 3|3, k), k ≥ 3; (7, 8|2, 3);
(3, 3|4, 4, ); (3, 4|3, 4);
(3, 3|4, 5); (3, 4|3, 5);
(3, 5|3, 4); (4, m|2, 3), m = 6, 7, 8, 9;
(4, 5|2, k), k = 3, 4, 5; (5, 5|2, 4);
(6, 7|2, 3); (7, 7|2, 3);
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(4, 4|2, k), k ≥ 3; (5,m|2, 3), m ≥ 3;
(2, 3|n, k), 3 ≤ gcd(n, k) ≤ 5; (2, 3|n, k), 3 ≤ gcd(n, k) ≤ 5;
(2,m|n, k), m ≥ 3, gcd(n, k) ≤ 2; (2,m|n, k), m = 4, 5, gcd(n, k) = 3;
(5,m|2, k), gcd(m, k) ≤ 5; (3,m|3, 3), m ≥ 4.

We consider all of the finite cases of G, G and G and study the Fibonacci length of them.
This computation compares the Fibonacci length of the extensions of G and gives us explicit
formulas for lengths which are in certain cases independent of at least one of the parameters of
the groups.

The periodic sequences of elements of finite algebraic structures have been studied by many
authors, one may see [2, 5, 3, 4, 10, 9], for examples. Following the notations of the article [4]
where, for a 2-generated non-abelian finite group G = 〈a, b〉,

x1 = a, x2 = b, xi = xi−2xi−1, i ≥ 3

is called the Fibonacci sequence of G depending the generating set {a, b}. The least integer k

(denoted by LEN(G)) such that xk+1 = x1 and xk+2 = x2 is called the Fibonacci Length of
G, and the least integer m (denoted by BLEN(G)) such that |xm+1| = |x1| and |xm+2| = |x2|,
is called the basic Fibonacci Length of G, where the |x| denotes the order of the element x in
the group G. Note, it is proved that BLEN divides LEN and the map θ : G −→ G given by
a 7→ xm+1 and b 7→ xm+2 is an automorphism of G with order LEN/BLEN (for more details
one may refer to [4]). We call this θ, the special automorphism of G. In 1990 Campbell, Doostie
and Robertson [4] gained to compute the length of the groups D2n and Q2n , and the simple
groups of order less than 105. The Fibonacci length and the basic Fibonacci length of the groups
Aut(D2n) and Aut(Q2n) have been computed in 2000 by Doostie and Campbell (see [7]).

The Fibonacci sequence {fn}∞n=0 of numbers defined by fn = fn−2 + fn−1 for n ≥ 0, and we
seed the sequence with f0 = 0 and f1 = 1. Modulo some integer n ≥ 2, it must ultimately
become periodic as there are only n2 different pairs of residues modulo n. Further, throughout
this paper, we use κ(n) to denote the fundamental period of the Fibonacci sequence modulo n,
and call it the Wall number of n (see [12]).

We attempt here to calculate the Fibonacci Lengths of certain remained cases of G and G of
the article [9].

2. The groups (2, 2|n, k), (n ≥ 2, k ≥ 2, n ≤ k)

As a result of Proposition 2.1 of [9] we get the finite cases as follows:




if d = gcd(n, k) then G ∼= D2d, the dihedral groups of order 2d,

if n 6= k then G ∼= D2|n−k|,
if n 6= k then G, is finite of order 4n|n− k|.

As a quick result of [4] we deduce that LEN{a,b}(G) = LEN{a,b}G = 6, BELN{a,b}(G) = 3 and
θ : G → G will be the special automorphism and then

θ :
{

a 7→ bab,

b 7→ b.

To calculate the Fibonacci length of G we consider the Fibonacci sequence {fi} of numbers as

f1 = f2 = 1, fi+1 = fi + fi−1, i ≥ 2.
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and define the Fibonacci sequence of elements of G as usual by:

x1 = a, x2 = b, xi = xi−2xi−1, i ≥ 3.

Then, we have:

Lemma 2.1. For every integers n and k where n 6= k and n, k ≥ 2, every element of the
sequence {xi} may be presented by

xi =





afi , if i ≡ 1 (mod 6),
a−1+fib, if i ≡ 2, 3,−1 (mod 6),
a−3+fibab, if i ≡ −2 (mod 6),
a−2+fiba, if i ≡ 0 (mod 6).

Proof. For i ≤ 6 we get the result at once. then using an induction method (by considring
six cases) we may get the result. For example let i ≡ 1 (mod 6) then, i − 1 ≡ 0 (mod 6) and
i− 2 ≡ −1 (mod 6). So,

xi = xi−2xi−1

= a−1+fi−2 · b · a−2+fi−1 · ba (by induction hypothesis)
= a−1+fi−2 · a−2+fi−1 · b2a (for, a2 = b2 and fi−1 is even in this case)
= a−3+fi · a2a (for, a2 = b2)
= afi .

as required. ¤

Proposition 2.1. For every integers n and k where 2 ≤ n ≤ k, the Fibonacci length of the group
G is independent of k. t = LEN{a,b}G if and only if t ≡ 0 (mod 6) and ft+3 ≡ 2 (mod 4n).

Proof. As a result of the proof of Proposition 2.1 of [9] we conclude the validity of the relation
a4n = 1 in the group G. So, G has a presentation isomorphic to

〈a, b | a4n = 1, a2 = b2, (ab)n = (ab−1)k〉.
Now, let t = LEN{a,b}G. Then, t is the least positive integer such that the equations xt+1 = x1

and xt+2 = x2 hold in G. Equivalenty we get:

t + 1 ≡ 1 (mod 6), aft+1 = a, a−1+ft+2 .b = b

by considering the Lemma 2.1 and its possible cases. These equations yield in turn the numerical
equations 




ft+1 ≡ 1 (mod 4n)
ft+2 ≡ 1 (mod 4n)
t ≡ 0 (mod 6),

by considering the relation a4n = 1 of G. Consequently, we get ft+3 ≡ 2 (mod 4n) and
t ≡ 0 ( mod 6), as required. ¤

Proposition 2.2. For every integers n and k where n ≤ k, LEN{a,b}G = κ(22 · n). So, the

Fibonacci length of the group G is independent of k.

Proof. It is similar to the proof of 2.1. ¤



R. GOLAMIE, H. DOOSTIE, K. AHMADIDELIR: FIBONACCI LENGTH AND SPECIAL... 185

3. The groups (`,m|2, 2), (` ≥ 4, m ≥ 2)

Let

G = 〈a, b | a` = bm, (ab)2 = (ab−1)2〉.
By the Lemma 3.1 of [9], |G| = 4` and its proof shows that the relation a4m = 1 holds in G.
Similar to the last section, every element of the Fibonacci sequence of elements of G may be
presented as follows

x1 = a, x2 = b,

xk =





afk−2 , if k ≡ 1,−2 (mod 6),
afk−2 · b, if k ≡ 2 or 3 (mod 6),
afk−2 · b−1, if k ≡ 0 or − 1 (mod 6),

for every k ≥ 3. The proof is easy by considering different cases for k and by using an induction
method. Using this feat we get the following result:

Proposition 3.1. (i) For non-abelian cases of G (at least one of ` and m is even),
LEN(G) = 6,

(ii) For every even value of ` and odd values of m, t = LEN{a,b}G if and only if ft−2 ≡
1(mod 4`) and ft−1 ≡ 0 (mod 4`),

(iii) For every integers ` and m where ` ≥ 4, the Fibonacci length of the group G is indepen-
dent of m, and LEN{a,b}G = κ(22 · `).

Proof. (i) It is sufficient to consider the Fibonacci sequences of elements x1 = a, x2 = b, x3 =
ab, x4 = bab = a−1, x5 = aba−1, x6 = ba−1, x7 = aba−1ba−1 = a, x8 = b. So LEN(G) = 6
for all values of ` and m whenever at least one of them is even. (ii) In G and G the relation
(ab)2 = (ab−1)2 yields aba−1 = b−1 (for m odd) and then we get atba−t = b±1 if t is even or odd,
respectively. Then every element of the Fibonacci sequence xi of G and G will be represented
as:

xk =





afk−3 , if k ≡ 1, 4 (mod 6),
afk−3 · b, if k ≡ 2 or 3 (mod 6),
afk−3 · b−1, if k ≡ 0 or − 1 (mod 6),

where k ≥ 7, and x1 = a, x2 = b, x3 = ab, x4 = a, x5 = a2b−1, x6 = a3b−1. The proof
is straight forward and follows by induction on k. Let t = LEN(G). Then xt+1 = x1 and
xt+2 = x2; i.e. t ≡ 0 (mod 6), ft−2 ≡ 1 (mod `) and ft−1 ≡ 0 (mod `) as required. On the other
hand, the relation b4m = 1 holds in G (see [9]). So a4` = 1 holds in G.

(iii) The proof is similar to the proof of (ii). ¤

4. The groups (2, 3|n, k), (3 ≤ gcd(n, k) ≤ 5)

For the values gcd(n, k) = 3, 4, 5 we have the groups

G1 = 〈a, b | a2 = b3 = (ab)3 = 1〉,

G2 = 〈a, b | a2 = b3 = (ab)4 = 1〉,

G3 = 〈a, b | a2 = b3 = (ab)5 = 1〉,
respectively. Then we deduce:
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Proposition 4.1. LEN(G1) = 16, LEN(G2) = 18, LEN(G3) = 50. Moreover, the special
automorphisms are given by:

θ1 :
{

a 7→ a,

b 7→ ba,
θ2 :

{
a 7→ a,

b 7→ aba,
θ3 :

{
a 7→ bab−1,

b 7→ bab−1ab−1.

Proof. The Fibonacci sequence of elements for G1 are

a, b, ab, bab, ab−1ab, abab, ab−1, b, a, ba, aba,

b−1a, abab−1a, ab−1a, b−1, ba, a, b,

which gives that LEN(G1) = 16. Considering the orders yields BLEN(G1) = 8, and θ1 comes
immediately. For G2 we do as before and simplify the words. We get:

a, b, ab, bab, ab−1ab, ab−1abab, b−1ab−1, ab−1a, ab,

a, aba, ba, b−1ab−1, b−1aba, bab−1, bab, b−1, ba, a, b.

So, LEN(G2) = 18, BLEN(G2) = 9, and θ2 will be defined as required. To simplify the words
of G3 we have to use some extra relations of G3. Using a2 = b3 = (ab)5 = 1, we will get the
identities:

(ab2ab)5 = 1,

(ab2ab2ab)3 = 1,

(ab2ab2abab2ab)2 = 1,

in G3. Now the long words of the Fibonacci sequence has to be simplified by hand calculations.
So, we get:

a, b, ab, bab, ab2ab, babab2ab, ab2ab2abab2ab, b−1aba,

babab−1, bab, bab−1, bab−1, bab−1ab−1, ab−1, b−1aba,

ababa, b−1abb−1aba, abab−1abab−1a, ab−1ab−1a, abab−1ababab−1a,

b−1aba, abab−1ababab−1a, b−1aba, abab−1ababab−1ab−1aba, abab−1ab−1abab−1a,

b−1ab−1, ab−1ab−1a, ab, ab−1a, abab−1a, b−1a, abab−1ab−1a, ab−1ab−1a,

abab−1abab−1a, ababab−1a, ab−1ab, b−1a, ab−1, b, a, ba, aba, b−1a, abab−1a,

ab−1a, ababa, ba, b−1ab−1, bab−1ab−1, bab−1, bab, b−1, ba, a, b.

Now, by simple calculations we can show that all of the consecutive pairs before the 51st term
is not equal to the generators set, i.e. {a, b}, except the first and second terms. Therefore,
LEN(G3) = 50, BLEN(G3) = 10 and

θ3 :
{

a 7→ bab−1,

b 7→ b(ab−1)2.

This completes the proof. ¤

5. The groups (2,m|n, k), (m ≥ 3, gcd(n, k) ≤ 2)

If gcd(n, k) = 1 then G is abelian and there is nothing to calculate, and if gcd(n, k) = 2, then

G = 〈a, b | a2 = bm = 1, (ab)2 = 1〉 ∼= D2m

So, LEN = 6, BLEN = 3.
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6. The groups (2,m|n, k), (gcd(n, k) = 3, m = 4, 5)

For m = 4, G is equal to:

G = (2, 4|n, k) = 〈a, b | a2 = b4 = (ab)3〉 ∼= 〈a, c | a2 = c3 = (ac)4 = 1〉.
So, as we showed in Section 4, LEN(G) = 18. For m = 5, we have G ∼= 〈a, c | a2 = c3 = (ac)5 =
1〉, and so LEN(G) = 50.

7. Special and remaining cases.

In the sixteen finite cases for G, not all of the groups G and G are finite (see [10, 9]). In the
following table we have collected the computer results for the orders and Fibonacci lengths (the
codes were written in GAP ([11]).

(`,m, n, k) |G| |G| |G| LEN(G) LEN(G) LEN(G)
(7, 8, 2, 3) 10752 ∞ ∞ 256 − −
(3, 3, 4, 4) 168 1008 8064 10 120 120
(3, 4, 3, 4) 168 ∞ ∞ 14 − −
(3, 3, 4, 5) 1080 3240 51840 22 88 264
(3, 4, 3, 5) 1080 ∞ ∞ 20 − −
(3, 5, 3, 4) 1080 1080 34560 20 20 240
(4, 6, 2, 3) 120 3840 ∞ 30 30 −
(4, 7, 2, 3) 168 168 4368 128 128 2688
(4, 8, 2, 3) 1152 ∞ ∞ 36 − −
(4, 9, 2, 3) 2448 2448 ∞ 480 480 −
(4, 5, 2, 3) 1 5 15 − − −
(4, 5, 2, 4) 160 320 4480 30 30 240
(4, 5, 2, 5) 360 360 28080 128 128 896
(5, 5, 2, 4) 360 3600 43200 80 240 240
(6, 7, 2, 3) 1092 1092 ∞ 392 392 −
(7, 7, 2, 3) 1092 7644 ∞ 30 240 −

The remaining cases for G and G which have not been studied for their finiteness property
are as follows:

LEN(G) :

(4, 4|2, k), k = 4, 5;

(2, 3|n, k), gcd(n, k) = 5 and
n + k

5
≡ ±1 (mod 3);

(2, 3|n, k) gcd(n, k) = 3, 4;

(2, 4|n, k) and (2, 5|n, k), gcd(n, k) = 3;
(3,m|n, k); gcd(m, k) = 1, . . . , 5;
(2,m|n, k), m ≥ 3, gcd(m, k) = 1, 2;
(5,m|2, 3), m ≥ 3.
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LEN(G) :

(3,m|2, k), gcd(m, k) = 1, . . . , 5;
(5,m|2, 3), m ≥ 3;

(2, 3|n, k), gcd(n, k) = 5 and
n + k

5
≡ ±1 (mod 3);

(2, 5|n, k), gcd(n, k) = 3.

8. Conjectures

Using some procedures in GAP ([11]), related to the computations of Fibonacci length, we
give the following conjectures on the groups of (3, 3|3, k), k ≥ 3:

(i) For every k ≥ 3, LEN(G) = 8k
gcd(k,3) and,

LEN(G) =
{

24k, if k = 6 + 2t+1,

8k, otherwise.

(ii) Let G = Uk. Then, LEN(U2t) = LEN(U3·2t) = 3 · 2t+3.
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