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SELF-DUAL CODES FROM SMALLER LENGTHS OF SELF-DUAL CODES
AND RECURSIVE ALGORITHM*

H. TOPCU1, H. AKTAS2

Abstract. Self-dual codes have been received great attention by researchers since the begin-

ning of the coding theory. In this work, some construction methods for this kind of codes are

composed which produce new self-dual codes from self-dual codes of smaller lengths. A spe-

cial one of these methods that is called recursive algorithm is also mentioned. For the binary

case, it was shown that recursive algorithm is actually same with another so-called building-up

construction method. This comparison is mentioned here.
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1. Introduction

Self-dual codes are an important class of linear codes because of their rich algebraic structure
and connections with other mathematical areas such as group theory, lattice theory, design
theory etc. Also some famous codes for example extended binary Hamming code of length 8,
binary Golay code of length 24, tetracode over GF(3) and hexacode over GF(4) are self-dual.

A linear [n,k] code C of length n over GF(q) is a k-dimensional vector subspace of GF(q)n.
An element of C is called a codeword and Hamming weight of a codeword is the number of
non-zero coordinates in it. Hamming weight of a codeword x is denoted by wt(x). Minimum
weight of a linear code C is defined by w(C):=min{wt(x)|x ∈ C, x 6= 0}. Distance between two
codewords x and y is defined as the number of the coordinates where x and y differ and denoted
by d(x,y). Minimum distance of a linear code C is defined by d(C) = min{d(x, y)|x, y ∈ C}. A
linear code C over GF(q) can also be denoted by [n,k,d] linear code where d is the minimum
distance of C. Euclidean inner product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is
x · y =

∑n
i=1 xiyi. The dual code C⊥ of C is defined as C⊥ = {x ∈ GF (q)n|x · y = 0, ∀y ∈ C}. If

C⊆C⊥, C is called self-orthogonal and if C=C⊥, C is called self-dual. A linear code over GF(2)
is called binary code.

A binary self-dual code is called Type II or doubly-even if every codeword in C has weight
divisible by 4. If there exists a codeword whose weight is congruent to 2 modulo 4, the code is
called Type I or singly-even. Two codes C1 and C2 are monomially equivalent if there exists a
monomial matrix M over GF(q) such that C2=C1M. Hence, for the binary case, two codes are
equivalent if one of them can be obtained by a permutation of the coordinates of the other’s. If
C is a binary linear [n,k,d] code then it satisfies the below inequality [4];
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d ≤
{

4[ n
24 + 4], if n 6= 22 (mod 24)

4[ n
24 + 6], if n = 22 (mod 24).

A binary self-dual code is called extremal if it meets the bounds of the above inequality.
A self-dual code is optimal if it has the highest possible minimum weight with determined
parameters.

Since the beginning of the coding theory,there are many papers about self-dual codes, their
constructions and their classifications [1, 2, 3, 4, 8, 6, 9, 12]. A special technique about con-
structing self-dual codes is using smaller lengths of self-dual codes. The earlier form of this idea
is made by Pless and Brauldi [15]. They have used shadow code concept and constructed a new
singly-even self-dual [10, 24, 48] code with a weight enumerator. Tsai [17] has used a similar
way and obtained two new singly-even extremal [10, 26, 52] and [10, 27, 54] codes. After him,
Dougherty [5] has carried this technique from binary case to over arbitrary fields. Then we can
see Harada’s matrix form which generates longer self-dual codes from existing self-dual codes
for binary case [7]. By using this method, he has published the first example of a [12, 35, 70]
singly-even self-dual code. Kim[6] has constructed new extremal self-dual codes of lengths 36,
38 and 58 by using a more general matrix form than Harada’s method. This is the so-called
building-up construction method. Then, Kim has carried his technique from binary case to over
another finite fields and different algebraic structures [10, 11, 14]. He has found many new self-
dual codes of various lengths.Another method with the same direction is used by Melchor and
Gaborit which is called recursive algorithm [1]. They have classified all of the 41 extremal binary
[8, 18, 36] self-dual codes. Melchor et al.[2] have classified all extremal self-dual codes of length
38. They have compared three different methods and used recursive algorithm. They showed
that there are exactly 2744 extremal [8, 19, 38] self-dual codes. Recently, Betsumiya et al[3].
have given a complete classification of doubly-even self-dual codes of length 40. Bouyuklieva
and Bouyukliev have used a similar way with Harada and Munemasa but the difference of their
algorithm is that they have found exactly one representative of every equivalance classes [4, 8].
They gave a complete classification of self-dual codes of length 38.

In this note, constructions of self-dual codes from smaller lengths of self-dual codes over finite
fields are investigated. Methods which are used for this aim are composed.

2. Shadow code concept

Let C be a singly-even self-dual binary code of length n and C0 is the subcode of C consisting
of all codewords of weight 0 modulo 4. S=S(C) is called the shadow of C and defined by S=C⊥0 -
C. C0 has codimension 1 in C. Hence C0 has codimension 2 in C⊥0 and there are cosets C1, C2,
C3 of C0 such that C⊥0 =C0∪C1∪C2∪C3 where C=C0∪C2 and S=C1∪C3.

Let C be a doubly-even self-dual binary code of length n and let C0 be any subcode of
C of codimension 1. Then C⊆C⊥0 and hence there are cosets C1, C2, C3 of C0 such that
C⊥0 =C0∪C1∪C2∪C3 where C=C0∪C2 and S=C1∪C3. Then, the shadow of C with respect to
C0 is defined by S=S(C:C0)=C1∪C3.

Pless and Brauldi has used above definitions to obtain new longer binary self-dual codes [15].
They have done this for two cases of the code, singly-even case and doubly-even case. Firstly,
they have investigated the orthogonality of the cosets C0, C1, C2, C3 to each other and following
tables for two cases obtained. For Table I and Table II, C0 denotes the doubly-even subcode
of a singly-even self-dual code C. For Table III and Table IV, C0 denotes the subcode with
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codimension 1 of the doubly-even self-dual code C.

TableI

n ≡ 2 or 6 (mod 8)
C0 C2 C1 C3

C0 ⊥ ⊥ ⊥ ⊥
C2 ⊥ ⊥ / /

C1 ⊥ / / ⊥
C3 ⊥ / ⊥ /

TableII

n ≡ 0 or 4 (mod 8)
C0 C2 C1 C3

C0 ⊥ ⊥ ⊥ ⊥
C2 ⊥ ⊥ / /

C1 ⊥ / ⊥ /

C3 ⊥ / / ⊥

TableIII

n ≡ 0 (mod 8); 1 ∈ C0

C0 C2 C1 C3

C0 ⊥ ⊥ ⊥ ⊥
C2 ⊥ ⊥ / /

C1 ⊥ / ⊥ /

C3 ⊥ / / ⊥

TableIV

n ≡ 0 (mod 8); 1 6∈ C0

C0 C2 C1 C3

C0 ⊥ ⊥ ⊥ ⊥
C2 ⊥ ⊥ / /

C1 ⊥ / / ⊥
C3 ⊥ / ⊥ /

By the help of these tables, construction method that is given by the following theorems has
been developed. Proofs of the following theorems are omitted.

Theorem 2.1. [15] Suppose that C is a singly-even self-dual code with length n where n≡2 or
6 (mod 8) and C0 is the subcode of C consisting of all codewords of weight 0 in modulo 4. Let
C1,C2,C3 be cosets of C0 and C∗ be the code of length n+2 obtained by extending C⊥0 as follows;
(0,0,C0), (1,1,C2), (1,0,C1), (0,1,C3). Then C∗ is a self-dual code. If n≡2 (mod 8), then C∗

is singly-even. If n≡6 (mod 8), then C∗ is doubly-even.

Theorem 2.2. [15] Suppose that C is a singly-even self-dual code with length n where n≡0 or
4 (mod 8) and C0 is the subcode of C consisting of all codewords of weight 0 in modulo 4.Let
C1,C2,C3 be cosets of C0 and C∗ be the code of length n+4 generated by (1,1,1,1,0,. . .,0) and the
following extension of C⊥0 ; (0,0,0,0,C0), (1,1,0,0,C2), (1,0,1,0,C1), (0,1,1,0,C3). Then C∗ is a
self-dual code. If n≡0 (mod 8), then C∗ is singly-even. If n≡4 (mod 8), then C∗ is doubly-even.

Theorem 2.3. [15] Suppose that C is a doubly-even self-dual code with length n and C0 is the
subcode of C with codimension 1 which contains all one vector 1. Let C1,C2,C3 be cosets of C0

and C∗ be the code of length n+4 generated by (1,1,1,1,0,. . .,0) and the following extension of
C⊥0 ; (0,0,0,0,C0), (1,1,0,0,C2), (1,0,1,0,C1), (0,1,1,0,C3). Then C∗ is a self-dual code.

Theorem 2.4. [15] Suppose that C is a doubly-even self-dual code with length n and C0 is the
subcode of C with codimension 1 which does not contain all one vector 1. Let C1,C2,C3 be cosets
of C0 and C∗ be the code of length n+2 obtained by extending C⊥0 as follows; (0,0,C0), (1,1,C2),
(1,0,C1), (0,1,C3). Then C∗ is a singly-even self-dual code.

3. Harada’s construction

Harada has obtained a new [12, 35, 70] singly-even self-dual code from the code D17 which is
an extremal singly-even code of length 68 by using his following method[7, 17]. This [12, 35, 70]
singly-even self-dual code is the first published example with this minimum weight and it was
denoted by C70.
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Proposition 3.1. [7] Let Ω be a subset of the set {1,2, . . ., n} such that |Ω| is odd if 2n≡0
(mod 4) and |Ω| is even if 2n≡2 (mod 4). Let G=[In, A] be a generator matrix of a self-dual
code C of length 2n, where In is the identity matrix of order n. Then the following matrix,

G∗ =




1 0 x1 . . . xn 1 . . . 1
y1
...

yn

y1
...

yn

In A


 ,

where xi=1 if i ∈ Ω and xi=0 otherwise and yi = xi+1 (1≤ i ≤ n), generates a self-dual code
C∗ of length 2n+2.

Proof. Since G generates a self-dual code, it is sufficent to show the orthogonalities of the first
row and other rows of G∗. Let ri be the ith row of G∗. For 2≤ i ≤ n+1, we have

r1 · ri = (xi−1 + 1) + xi−1 + ki−1 ≡ 0 (mod 2),

where ki is the number of 1’s in the ith row of A. Therefore G∗ generates a self-dual code of
length 2n+2. ¤

4. Building-up construction

This so-called method has been represented firstly in by Kim [6]. In [6], Kim has studied on
binary self-dual codes and constructed new extremal self-dual binary codes of length 36, 38 and
58. He has shown that there are at least 14 inequivalent extremal self-dual [8, 18, 36] codes
and there are at least 368 inequivalent extremal self-dual [8, 19, 38] codes. For length 58, 11
extremal self-dual [10, 29, 58] codes have been constructed. For all of these constructions the
following method has been used. Building-up construction for binary case is more general than
Harada’s method in [7].

Theorem 4.1. [6] Let S be a subset of the set {1, 2, ..., 2n} of coordinate indices such that |S|
is odd. Let Go = (L|R) = (li|ri) be a generator matrix (may not be in standard form) of a
self-dual codes C0 of length 2n, where li and ri are rows of L and R, respectively, for 1≤i≤n.
Let x = (x1, x2, ..., xn, xn+1, ..., x2n) be the characteristic vector of S, i.e., xj := 1 if j ∈ S and
xj := 0 if j 6∈ S for 1≤j≤2n. Suppose that yi := (x1, x2, ..., xn, xn+1, ..., x2n) · (li|ri) for 1≤i≤n.
Then the following matrix generates a self-dual code C of length 2n+2

G =




1 0 x1 . . . xn xn+1 . . . x2n

y1
...

yn

y1
...

yn

L R


 .

Proof. C has dimension n+1 since the row rank of C is n+1. It remains to show that any two
rows of G are orthogonal. Note that the first row of G is orthogonal to itself. Since any two
rows of G excluding the first row of G are orthogonal to each other, it suffices to show that the
first row of G is orthogonal to any other rows of G. This is true since for 1≤i≤n
(1, 0, x1, x2, ..., xn, xn+1, ..., x2n) · (yi, yi, li, ri) =

= yi + (x1, x2, ..., xn, xn+1, ..., x2n) · (li|ri) =
= yi + yi = 0 in GF(2). ¤

Kim and Lee has generalized building-up construction method from self-dual codes over GF(2)
to self-dual codes over GF(q) where q is a power of an odd prime [10]. For the cases, q≡1 (mod
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4) and q=2m , where m is a positive integer, following propositions are obtained. Proves of these
propositions are analogue to Theorem 1 in [6].

Proposition 4.2. [10] Assume that q is a power of an odd prime such that q≡1 (mod 4). Let
c be in GF(q) such that c2=-1 in GF(q). Let G0 = (L|R) = (li|ri) be a generator matrix (not
necessarily in standard form) of an Euclidean self-dual code C0 over GF(q) of length 2n, where li
and ri are the rows of the matrices L and R, respectively, for 1≤i≤n. Then the following matrix
generates a self-dual code C over GF(q) of length 2n+2

G =




1 0 x1 . . . xn xn+1 . . . x2n

−y1
...

−yn

cy1
...

cyn

L R


 .

Proposition 4.3. [10] Let G0 = (L|R) = (li|ri) be a generator matrix (not necessarily in stan-
dard form) of an Euclidean self-dual code C0 over GF(2m) of length 2n, where li and ri are the
rows of the n x n matrices L and R, respectively, for 1≤i≤n. Let x = (x1, x2, ..., xn, xn+1, ..., x2n)
be a vector in GF(2m)2n with x · x = 1. Set yi := (x1, x2, ..., xn, xn+1, ..., x2n) · (li|ri) for 1≤i≤n.
Then the following matrix generates an Euclidean self-dual code C over GF(2m) of length 2n+2

G =




1 0 x1 . . . xn xn+1 . . . x2n

y1
...

yn

y1
...

yn

L R


 .

Building-up construction technique for self-dual codes also have been developed over finite
fields GF(q), where q≡3 (mod 4), by Kim and Lee [14]. 945 new extremal self-dual ternary
[32,16,9] self-dual codes have been constructed by using the following proposition. Proof of this
proposition is analogous to Theorem 1 in [6].

Proposition 4.4. [14] Let q be a power of an odd prime with q≡3 (mod 4) and let n be even.
Let α and β be in GF(q)∗ such that α2 + β2 + 1 = 0 in GF(q). Let G0 = (ri) be a generator
matrix(not necessarily in standard form) of a self-dual code C0 of length 2n, where ri are the
row vectors for 1≤i≤n. Let x1 and x2 be vectors in GF(q)2n such that x1 · x2 = 0 in GF(q)
and xi · xi = −1 in GF(q) for each i=1,2. For each i, 1≤i≤n, let si := x1 · ri, ti := x2 · ri and
yi := (−si,−ti,−αsi−βti,−βsi+αti) be vector of length 4. Then the following matrix generates
a self-dual code C over GF(q) of length 2n+4.

G =




1 0 0 0
0 1 0 0

x1

x2

y1
...

yn

r1
...
rn




.

5. Recursive construction for binary self-dual codes

Melchor and Gaborit [1] have given a new recursive method to classify extremal self-dual
codes. By using this method, they have classified all of the 41 extremal binary [8, 18, 36] self-
dual codes. Subtraction is a well-known method for self-dual binary codes which says that it
is possible to construct a self-dual binary [n, n

2 , ≥d] code from a self-dual binary [n+2, n
2 +1,
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d+2] code. For a self-dual binary code C of length n, let C1={(x1,x2,. . .,x2n)∈C | x1=x2=0 or
x1=x2=1} and C2={(x3,x4,. . .,x2n)| (x1,x2,. . .,x2n)∈C1}. Then C2 is a [2n-2, n-1] subcode of
C which has been obtained by subtraction of C. In [1], they have shown that the converse of
this idea is possible, all self-dual binary [n+2, n

2 , d+2] codes can be constructed from all binary
self-dual [n, n

2 , ≥d] codes.

Assume that one starts from a [n, n
2 ,d] code Cn with generator matrix

[
y′

E

]
where y′ is a

codeword of weight d. Let ai ∈ {0, 1} and MC denote the set of all [n+2, n
2 ] codes with generator

matrices of the form




1 1 y′

a1
...

an
2
−1

a1
...

an
2
−1

E


 .

It is clear that C is self-orthogonal. Hence, to obtain Cn+2 from C, it is sufficent to complete
all the codes C of MC by one of the three non-null elements of C⊥/C. If one starts from the
set of all inequivalent [n, n

2 ,d] self-dual codes, it is possible to rebuild all the [n+2, n
2 +1, d+2]

self-dual codes. Let Cd is the subcode of Cn which is generated by the vectors of weight d.
These vectors have to be extended in codewords of weight d+2. So they must be extended with
11 and it will be easier to consider 2n−k possibilities for the ai instead of 2n−1 possibilities where
k≤ n

2 is the dimension of Cd. This makes the algorithm faster. Now, by using these facts the
following algorithm can be written.

Recursive Algorithm

Input: Sn, the set of [n,n2 ,d] self-dual codes up to permutation.
Output: The set of [n+2, n

2 +1, d+2] self-dual codes.
For each code Cn of Sn do:
1) List all the words of weight d and construct the subcode Cd of dimension k generated by

these words. Construct a generator matrix Gd of Cd composed only with words of weight d.
2) Let E be a code of dimesion n

2 -k with generator matrix GE such that Cn=Cd+E, construct
the extended codes C with generator matrices




1
...
1

1
...
1

Gd

a1
...

an
2
−k

a1
...

an
2
−k

GE




such that ai ∈ {0, 1}, (1 ≤ i ≤ n− k).
3) Complete all the previous codes C by non-null elements of C⊥/C in order to obtain a

self-dual code and check for codes with minimum distance d+2. For codes with weight d+2,
check for the equivalence with already obtained self-dual [n+2, n

2 +1, d+2] codes.
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6. Comparison of building-up construction and recursive algorithm for binary

case

Generator matrices of self-dual binary [n+2, n
2 ] codes which are obtained in step2 of the

recursive algorithm is in the following form




1 1 y′

a1
...

an
2
−1

a1
...

an
2
−1

E


 .

Let C be a self-orthogonal code that is generated by the matrix in the above form. In recursive
algorithm C is completed with one of the three non-null elements of C⊥/C to satisfy the self-
duality. Assume that, C is completed with the coset C+y and the result code is denoted by
Cn+2. A generator matrix of Cn+2 can be written as the following form up to permutation
equivalance

G =




1 1 y′

a1
...

an
2
−1

a1
...

an
2
−1

E

1 0 x1 . . . xn




,

where (1, 0, x1, . . . xn) ∈ C + y and x = (x1, . . . xn) satisfies the following conditions.

E · x = [eij ] ·




x1
...

xn


 =




a1
...

an
2
−1


 and y′ · x = (y′1, . . . , y

′
n) · (x1, . . . , xn) = 1

such that E = [eij ] is an (n
2
−1) × n matrix. Also x must be an odd-like vector. Then, by the

change of the first row and last row of the generator matrix we can obtain

G =




1 0 x1 . . . xn

1 1 y′

a1
...

an
2
−1

a1
...

an
2
−1

E




.

Now, if we write
[

y′

E

]
= [L|R] and for n = 2m (n is even since Cn is self-dual) by transforma-

tions such that (x1, . . . , xn
2
, . . . , xn) = (x1, . . . , xm, . . . , x2m) and y1 = 1, y2 = a1, y3 = a2, . . .,

ym = an
2
−1, then we have

G =




1 0 x1 . . . xm xm+1 . . . x2m

y1
...

ym

y1
...

ym

L R


 .

Hence it shows that the generator matrix of the code Cn+2 which is obtained in the recursive
algorithm can be written in the form of a generator matrix of Cn+2 which is obtained in the
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building-up construction [6]. As a conclusion, we can say that for the binary case recursive
algorithm and building-up construction are actually the same.

7. Modified building-up construction

Kim and Lee have modified building-up construction method via the idea of the recursive
algorithm [11].

Step 1: For each i, let si and ti be in GF(q) and define yi:=(si, ti, αsi + βti, βsi − αti) be a
vector of length 4. Then

G1 =




y1 r1
...

...
yn rn




generates a self-orthogonal code C1.
Step 2: Let C be the dual of C1. Consider the quotient space C/C1. Let U1 be the set

of all coset representatives of the form x′1=(1 0 0 0 x1) such that x′1·x′1=0 and U2 the set of all
coset representatives of the form x′2=(0 1 0 0 x2) such that x′2·x′2=0.

Step 3: For any x′1 ∈U1 and x′2 ∈U2 such that x′1·x′2=0, the following matrix

G =




1 0 0 0
0 1 0 0

x1

x2

y1
...

yn

r1
...

rn




generates a self-dual code C over GF(q) of length 2n+4.
This method is a kind composition of the building-up construction and recursive algorithm

for the case of self-dual codes over GF(q), where q≡3 (mod 4). Recursive method was only
defined for the binary codes but it is more efficient than building-up construction. Hence,
modified building-up construction is more efficient than building-up construction and it carries
the recursive method on the case of self-dual codes over GF(q), where q≡3 (mod 4).

8. Conclusion

It can be seen that there are too many papers about self-dual codes and their classifications.
Usually, researchers focus on finding unknown self-dual codes by using various constructions
and hence completing the uncomplete classifications. Many examples about self-dual code con-
struction can be seen in [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17]. In this work, with a
different perspective, we have focused on composing some effective construction methods for
self-dual codes. We think that, it is beneficial to look together various methods. By comparing
them, sometimes it can be said that, they are actually the same methods such as building-up
construction and recursive algorithm for binary case [2, 16]. Moreover, by composing them more
efficient methods can be obtained such as modified building-up construction [11].

References

[1] Aguilar-Melchor, C., Gaborit, P., (2008), On the classification of extremal [8, 18, 36] binary self-dual codes,

IEEE Transactions on Information Theory, 54(10), pp.4743-4750.

[2] Aguilar-Melchor, C., Gaborit, P., Kim, J.-L., Sok, L., Sol, P., (2012), Classification of extremal snd s-extremal

binary self-dual codes of length 38, IEEE Trans. Inform. Theory, 58, pp.2253-2262.

[3] Betsumiya, K., Harada M., Munemasa, A., (2012), A complete classification of doubly-even self-dual codes

of length 40, The Electronic Journal of Combinatorics, 19, pp.18.



H. TOPCU, H. AKTAS: SELF-DUAL CODES FROM SMALLER SELF-DUAL CODES... 185

[4] Bouyuklieve, S., Bouyukliev, I., (2012), An algorithm for classification of binary self-dual codes, IEEE

Transactions on Information Theory, 58(6), pp.3933-3940.

[5] Dougherty, S. T., (1995), Shadow codes and weight enumerators, IEEE Transactions on Information Theory,

41(3), pp.762-768.

[6] Kim, J.-L., (2001), New extremal self-dual codes of length 36,38 and 58, IEEE Trans. Inform Theory, 47,

pp.386-393.

[7] Harada M., (1997), The existence of a self-dual [12, 35, 70] code and formally self-dual codes, Finite Fields

Appl., 3, pp.131-139.

[8] Harada, M., Munemasa, A., (2012), Classification of self-dual codes of length 36, Advances in Mathematics

of Communications, 6(2), pp.229-235.

[9] Huffman, W.C., (2005), On the classification and enumeration of self-dual codes, Finite Fields Appl., 11,

pp.451-490.

[10] Kim, J.-L., Lee, Y., (2004), Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin

Theory Ser. A, 105, pp.79-95.

[11] Kim, J.-L., Lee, Y., (2012), An efficent construction of self-dual codes, arXiv.org, arXiv:1201.5689.

[12] Pless, V., (1975), On the classification and enumeration of self-dual codes, J. Combin Theory Ser. A, 18(3),

pp.313-335.

[13] Rains, E, Sloane, N.J.A., (1998), Self-dual Codes, in: Pless V., Huffman W.C. (Eds.), ”Handbook of Coding

Theory”, Elsevier, Amsterdam. Netherlands.

[14] Kim, J.-L., Lee, Y., (2009), Self-dual codes using the building-up construction, ISIT 2009, Seoul, Korea, June

28-July 3.

[15] Pless, V., Brualdi, R., (1991), Weight enumerator of self-dual codes, IEEE Transactions on Information

Theory, 37(4), pp.1222-1225.

[16] Topcu, H., Aktas, H., (2012), Self-dual Kodlar ve Insa Yontemleri, Nevsehir Universitesi Fen Bilimleri En-

stitusu.

[17] Tsai, H.-P., (1992), Existence of some extremal self-dual codes, IEEE Transactions on Information Theory,

38(6), pp.1829-1833.

Hatice Topcu received her B.Sc. degree in 2007

from Hacettepe University, Turkey. Then, she

has got her M.Sc. degree in 2012 from Nevsehir

University, Turkey. During her M.Sc., between

Feb-June 2011, she has studied at University of

Louisville, KY, USA as a researcher. She has

started to Ph.D. in 2012 at Nevsehir University

and still-continuing.



186 TWMS J. PURE APPL. MATH., V.4, N.2, 2013

Hacı Aktas is an Associated Professor of Math-

ematics at Erciyes University (Kayseri, Turkey).

He received M.Sc. and Ph.D. degrees in Mathe-

matics from Erciyes University in 1994 and 1997,

respectively. His research interests include fuzzy

and soft algebraic structures and coding theory.

He has published about 20 papers at national and

international journals.


