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NORMAL SUBGROUPS OF FINITE INDEX FOR THE GROUP
REPRESENTATION OF THE CAYLEY TREE

U.A. ROZIKOV1, F.H. HAYDAROV2

Abstract. In this paper we give full description of normal subgroups of index four and six for

a group representation of the Cayley tree.
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1. Introduction

There are several thousand papers and books devoted to the theory of groups. But still there
are unsolved problems, most of which arise in solving of problems of natural sciences as physics,
biology etc. In particular, if configuration of physical system is located on a lattice (in our case
on the graph of a group) then the configuration can be considered as a function defined on the
lattice. Usually, more important configuration (functions) are periodic ones. It is well-known
that if the lattice has a group representation then periodicity of a function can be defined by a
given subgroup of the representation. More precisely, if a subgroup, say H, is given, then one
can define H- periodic function as a function, which has a constant value (depending only on
the coset) on each (right or left) coset of H. So the periodicity is related to a special partition
of the group (that presents the lattice on which our physical system is located). There are many
works devoted to several kind of partitions of groups (lattices) (see e.g. [1], [3], [4], [6]).

Cayley tree. A Cayley tree (Bethe lattice) Γk of order k ≥ 1 is an infinite homogeneous
tree, i.e., a graph without cycles, such that exactly k + 1 edges originate from each vertex. Let
Γk = (V, L) where V is the set of vertices and L that of edges (arcs). Two vertices x and y are
called nearest neighbors if there exists an edge l ∈ L connecting them. We will use the notation
l = 〈x, y〉. A collection of nearest neighbor pairs 〈x, x1〉, 〈x1, x2〉, ...〈xd−1, y〉 is called a path from
x to y. The distance d(x, y) on the Cayley tree is the number of edges of the shortest path from
x to y.

A group representation of the Cayley tree. Let Gk be a free product of k + 1 cyclic groups
of the second order with generators a1, a2, ...ak+1, respectively.

It is known that there exists a one to one correspondence between the set of vertices V of the
Cayley tree Γk and the group Gk.

To give this correspondence we fix an arbitrary element x0 ∈ V and let it correspond to the
unit element e of the group Gk. Using a1, ..., ak+1 we numerate the nearest-neighbors of element
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e, moving by positive direction. Now we’ll give numeration of the nearest-neighbors of each
ai, i = 1, ..., k + 1 by aiaj , j = 1, ..., k + 1. Since all ai have the common neighbor e we give to
it aiai = a2

i = e. Other neighbor are numerated starting from aiai by the positive direction.
We numerate the set of all the nearest-neighbors of each aiaj by words aiajaq, q = 1, ..., k + 1,

starting from aiajaj = ai by the positive direction. Iterating this argument one gets a one-to-one
correspondence between the set of vertices V of the Cayley tree Γk and the group Gk.

In Chapter 1 of [4] it was constructed several normal subgroups of the group representation of
the Cayley tree. In particular some normal subgroups of index 4 and index 6 were constructed.
In this paper we shall give full description of normal subgroups of index four and index six.

Normal subgroups of finite index of the group Gk. Any (minimal represented) element x ∈ Gk

has the following form: x = ai1ai2 ...ain , where 1 ≤ im ≤ k + 1,m = 1, ..., n. The number n is
called the length of the word x and is denoted by l(x). The number of letters ai, i = 1, ..., k + 1,

that enter the non-contractible representation of the word x is denoted by wx(ai).
The following is well-known (see [2],[5]).

Proposition 1.1. Let ϕ be homomorphism of the group Gk with the kernel H. Then H is a
normal subgroup of the group Gk and ϕ(Gk) ' Gk/H, (where Gk/H is a quotient group) i.e.,
the index |Gk : H| coincides with the order |ϕ(Gk)| of the group ϕ(Gk).

Let H be a normal subgroup of a group G. Define the homomorphism g from G onto the
quotient group G/H by g(a) = aH for all a ∈ G. Then Kerϕ = H.

Definition 1.1. Let M1,M2, ..., Mm be some sets and Mi 6= Mj , for i 6= j. We call the inter-
section ∩m

i=1Mi contractible if there exists i0(1 ≤ i0 ≤ m) such that

∩m
i=1Mi =

(
∩i0−1

i=1 Mi

)
∩ (∩m

i=i0+1Mi

)
.

Let Nk = {1, ..., k + 1}. The following Proposition describes several normal subgroups of Gk.

Put

HA =

{
x ∈ Gk |

∑

i∈A

ωx(ai) is even

}
. (1)

Proposition 1.2. [4] For any ∅ 6= A ⊆ Nk, the set HA ⊂ Gk satisfies the following properties:
(a) HA is a normal subgroup and |Gk : HA| = 2;
(b) HA 6= HB, for all A 6= B ⊆ Nk;
(c) Let A1, A2, ..., Am ⊆ Nk. If ∩m

i=1HAi is non-contractible, then it is a normal subgroup of
index 2m.

2. New normal subgroups of finite index

2.1. The case of index four.

Proposition 2.1. Let ϕ be an epimorphism of the group Gk onto group (Zn, +n), n ∈ N.

Then n ∈ {1, 2}.
Proof. Let ai ∈ Gk, i ∈ Nk. Then [0]n = ϕ(e) = ϕ(a2

i ) = (ϕ(ai))2. Hence for the order of ϕ(ai)
we have o(ϕ(ai)) ∈ {1, 2}.

Case 1. Let n be an odd number. By Lagrange’s theorem, the group (Zn, +n) hasn’t any
element ϕ(aj) ∈ Gk, j ∈ Nk such that o(ϕ(aj)) = 2, i.e., ϕ(x) = [0]n for any x ∈ Gk. Since
ϕ(Gk) ' Zn we have n = 1.

Case 2. Let n be an even number. Denote

A = {i| ϕ(ai) = [0]n}, B = {i| ϕ(ai) = [n/2]n}.
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Since a2
i = e and ϕ is an epimorphism we note that there is only one element [c]n ∈ Zn such

that o([c]n) = 2, i.e., [c]n = [n/2]n = 2. It is clear that if c ∈ Gk such that o(c) = m then o(ϕ(c))
divides m. Hence A ∪B = Nk. Then since ϕ ' Zn we have n = 2. Consequently

ϕ(x) =





[0]2, if
∑

i∈B ωx(ai) is even,

[1]2, if
∑

i∈B ωx(ai) is odd.

¤

Lemma 2.1. [2]. Every finite cyclic group of order n is isomorphic to (Zn,+n).

By Proposition 2.1, Lemma 2.1 we get

Corollary 2.1. Let ϕ : Gk → < a > (finite cyclic group) be an epimorphism of groups. Then
|Gk : Kerϕ| ∈ {1, 2}.
Corollary 2.2. Any normal subgroup of index 2 has the form (1), i.e, {HA| A ⊆ Nk} =
{H| |Gk : H| = 2}.

Consider the set G = {e, a, b, c}. Let e be an identity element of G and define ∗ on G by
means of the following operation:

b ∗ a = a ∗ b = c, c ∗ a = a ∗ c = b, c ∗ b = b ∗ c = a, a2 = e, b2 = e, c2 = e.

This group is well-known as Klein 4- group.

Proposition 2.2. [2]. There are only two groups of order 4 (up to isomorphism), a cyclic group
of order 4 and K4 (Klein 4-group).

Theorem 2.1. Any normal subgroup of index 4 has the form HA ∩HB, i.e.

{H| |Gk : H| = 4} = {HA ∩HB| A,B ⊆ Nk, A 6= B}.
Proof. By Proposition 2.1 there is not epimorphism ϕ of Gk onto (Z4,+4). By Proposition 2.2
we have ϕ(Gk) = K4.

(a) By Proposition 1.2 we get

{HA ∩HB| A,B ⊆ Nk, A 6= B 6= ∅} ⊆ {Kerϕ| |Gk : Kerϕ| = 4}.
(b) Let S = {A0, A1, A2, A3}, Ai ⊂ Nk, ∪3

i=0Ai = Nk. Here and further on |S| denotes the
cardinality of S. It’s easy to check |S| ≥ 3.

Case 1. Let |S| = 3. If A0 6= ∅ then |Gk : Kerϕ| = 2. Hence there exist j ∈ {1, 2, 3} such that
A0 = Aj = ∅. Let j = 3 (the case j ∈ {1, 2} is similar). Then there exists a unique epimorphism
(corresponding to A1, A2), i.e.,

ϕA1A2(x) =





e, if
∑

i∈A1
ωx(ai),

∑
i∈A2

ωx(ai) are even,

a, if
∑

i∈A1
ωx(ai) is odd,

∑
i∈A2

ωx(ai) is even,

b, if
∑

i∈A1
ωx(ai) is even,

∑
i∈A2

ωx(ai) is odd,

c, if
∑

i∈A1
ωx(ai),

∑
i∈A2

ωx(ai) are odd.

Then
KerϕA1A2 = HA1 ∩HA2 ⊂ {HA ∩HB| A, B ⊆ Nk}.

Case 2. |S| = 4.
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Case 2.1. Let A3 = ∅ (the case A1, A2 are similar). Then |Ai| ≥ 1, i ∈ {0, 1, 2} and∑2
i=0 |Ai| = k + 1. For all x ∈ Gk we can construct following epimorphism

ϕA0A1A2(x) =





e, if
∑

i∈A1
ωx(ai),

∑
i∈A2

ωx(ai) are even,

a, if
∑

i∈A1
ωx(ai) is odd,

∑
i∈A2

ωx(ai) is even,

b, if
∑

i∈A1
ωx(ai) are even,

∑
i∈A2

ωx(ai) are odd,

c, if
∑

i∈A1
ωx(ai),

∑
i∈A2

ωx(ai) are odd.

Then
KerϕA0A1A2 = HA1 ∩HA2 ⊂ {HA ∩HB| A,B ⊆ Nk}.

Case 2.2. |A0| ≥ 0, |Ai| ≥ 1, i ∈ {1, 2, 3} and
∑3

i=0 |Ai| = k + 1. Here, as before we can
construct a unique epimorphism ϕA0A1A2A3 .

KerϕA0A1A2A3 =



x|

∑

i∈A1∪A3

ωx(ai),
∑

i∈A2∪A3

ωx(ai) are even



 .

Hence
KerϕA0A1A2A3 = HA1∪A3 ∩HA2∪A3 ⊂ {HA ∩HB| A,B ⊆ Nk}.

Thus we have proved

{Kerϕ| |Gk : Kerϕ| = 4} ⊆ {HA ∩HB| A,B ⊆ Nk, A, B 6= ∅}.
This completes the proof. ¤

2.2. The case of index six.

Proposition 2.3. [2]. There are only two (up to isomorphism) groups of order 6, a cyclic group
of order 6 and S3.

Let ϕ is a homomorphism of the group Gk. Then by Proposition 2.3 we get following Corollary.

Corollary 2.3. If |Gk : Kerϕ| = 6 then ϕ(Gk) ' (S3, ◦).
Let Ξn = {A1, A2, ..., An} be a partition of the set Nk/A0, where A0 ⊂ Nk, 0 ≤ |A0| < k + 1.

Put mj is a minimal element of Aj , j ∈ {1, 2, ..., n}.
Now we’ll define an equivalence relation on the set Gk. Let x = ai1ai2 ...aiq ∈ Gk. If ip ∈

A0, p ∈ {1, 2, ..., q} then we’ll put e instead of aip and if ip ∈ Aj , j ∈ {1, ..., n} then we’ll put
mj instead of ip, i.e.,

x = ai1ai2 ...aip → aj1aj2 ...ajp = aml1
aml2

....amls
= x̃, s ≤ n. (2)

x̃ is a non-contractible representation of the word aml1
aml2

....amls
. Introduce the following equiv-

alence relation on the set Gk : x ∼ y if x̃ = ỹ. It’s easy to see this relation is reflexive, symmetric
and transitive.

Let Ξn = {A1, A2, ..., An} be a partition of Nk\A0, 0 ≤ |A0| ≤ k + 1− n. Then we consider
function un : {a1, a2, ..., ak+1} → {e, a1, ..., ak+1} as

un(x) =

{
e, if x = ai, i ∈ A0

amj , if x = ai, i ∈ Aj , j = 1, 2, ..., n.

Define γn : Gk → Gk by the formula

γn(x) = γn(ai1ai2 ...ais) = un(ai1)un(ai2)...un(ais)
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Put
HΞn = {x| l(γn(x)) : 6}, n < k + 1. (3)

Proposition 2.4. Let Ξn = {A1, A2, ..., An} be a partition of Nk\A0, 0 ≤ |A0| ≤ k + 1 − n.

Then the following properties hold
(a) If Ξ2 = {A1, A2} then HΞ2 is a normal subgroup of index six of Gk.

(b) Let Ξ3 = {A1, A2, A3} and m1,m2,m2m1m2 are minimal elements of A1, A2, A3 respec-
tively then HΞ3 is a normal subgroup of index six of Gk.

Proof. We’ll prove Property (a) (Property (b) is similar). Let x = ai1ai2 ...ain ∈ Gk. It’s
sufficient to show x−1HΞ2x ⊆ HΞ2 . Let l(x̃) be odd (the case even is similar) and h ∈ HΞ2

then x̃ = ami1
ami2

...ami2
and h̃ = amj1

amj2
...amj2

, where i1, i2, j1, j2 ∈ {1, 2}. Let y be the

non-contractible representation of the word x̃−1h̃x̃. Then l(y) = l(h̃). Since x̃−1hx = y we have
γ2(x−1hx) : 6. Hence x−1hx ∈ HΞ2 . This completes the proof. ¤

Let ϕ : Gk → S3 be an epimorphism. Denote

B0 = {i| ϕ(ai) = e}, B1 = {i| ϕ(ai) = (12)},

B2 = {i| ϕ(ai) = (13)}, B3 = {i| ϕ(ai) = (23)}. (4)

Remark 2.1. {B1, B2, B3} is a partition of Nk \B0.

Lemma 2.2. Let ϕ : Gk → S3 be an epimorphism. For any x ∈ Gk there exist y ∈ Gk such
that ϕ(x) = ϕ(y) and l(y) ≤ 6.

Proof. Let x = ai1ai2 ...ain ∈ Gk and y = ai1 ...ain−6s , where s =
[

n
6

]
, ai0 = e. Then l(y) ≤ 6.

From (23) = (13)◦ (12)◦ (13) and (12)◦ (13)◦ (12)◦ (13)◦ (12)◦ (13) = e we get ϕ(x) = ϕ(y). ¤

Theorem 2.2. Let H be a normal subgroup of the group Gk. Then {H| |Gk : H| = 6} =
{HΞ2 , HΞ3}.
Proof. Let ϕ : Gk → S3 be an epimorphism with |Gk : Kerϕ| = 6. By Corollary 2.3 we get
ϕ(Gk) ' S3. By Proposition 2.4, HΞ2 ⊆ {H| |Gk : H| = 6}. Hence it’s sufficient to check
{H| |Gk : H| = 6} ⊂ HΞ2 .

Case 1. Let Ξ2 = {A1, A2}- be a partition of Nk \A0. Then we can construct six epimorphism
(corresponding to A0, A1, A2). By Lemma 2.2 we can show these epimorphisms. Put mi is a
minimal element of Bi, i ∈ {1, 2, 3}, defined in (4).

Case 1.1. Let A1 = B1 and A2 = B2 (A1 = B2, A2 = B1 are similar). Then

ϕ
(1)
A0A1A2

(x) =





e, if x̃ ∈ {e, am1am2am1am2am1am2 , am2am1am2am1am2am1},
(12), if x̃ ∈ {am1 , am2am1am2am1am2},
(13), if x̃ ∈ {am2 , am1am2am1am2am1},
(23), if x̃ ∈ {am1am2am1 , am2am1am2},
(312), if x̃ ∈ {am1am2 , am2am1am2am1},
(231), if x̃ ∈ {am2am1 , am1am2am1am2}.

Case 1.2. A1 = B1, A2 = B3 (B1 = A2, B3 = A1 are similar).
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ϕ
(2)
A0A1A2

(x) =





e, if x̃ ∈ {e, am1am3am1am3am1am3 , am3am1am3am1am3am1},
(12), if x̃ ∈ {am1 , am3am1am3am1am3},
(13), if x̃ ∈ {am1am3am1 , am3am1am3},
(23), if x̃ ∈ {am3 , am1am3am1am3am1},
(312), if x̃ ∈ {am3am1 , am1am3am1am3},
(231), if x̃ ∈ {am1am3 , am3am1am3am1}.

Case 1.3. A1 = B2, A2 = B3 (A1 = B3, A2 = B2 are similar).

ϕ
(3)
A0A1A2

(x) =





e, if x̃ ∈ {e, am2am3am2am3am2am3 , am3am2am3am2am3am2},
(12), if x̃ ∈ {am2am3am2 , am3am2am3},
(13), if x̃ ∈ {am2 , am3am2am3am2am3},
(23), if x̃ ∈ {am3 , am2am3am2am3am2},
(312), if x̃ ∈ {am2am3 , am3am2am3am2},
(231), if x̃ ∈ {am3am2 , am2am3am2am3}.

Hence
Kerϕ

(i)
A0A1A2

= HΞ2 .

Case 2. Let Ψ3 = {A1, A2, A3} be a partition of Nk \ A0. Then there exist six epimorphism
(corresponding to A1, A2, A3). Let Ai = Bi, i ∈ {0, 1, 2, 3} (other cases are similar). It’s easy
to see KerϕA0A1A2A3 is equal to

(x ∈ Gk | x̃ ∈ {e, am1am2am1am3 , am1am3am1am2 , am1am2am3am2 , am1am3am2am3 , am2am3am1am3}) .

From ϕ(am1am2am1
) = ϕ(am3) we get KerϕA0A1A2A1 = HΞ3 . ¤
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