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ON UNIFORM TOPOLOGY AND ITS APPLICATIONS
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1. Introduction

The main notions relevant to the uniform topology gradually revealed in the theory of Real
Analysis. Historically the first notions in the theory of uniform spaces clearly can be consid-
ered the notion of what subsequently was called as ”Cauchy sequence” (1827) and the notion
of uniformly continuous function which appeared in the last half of the XIX’s century. French
mathematician M. Frechet devised [20] (1906) a notion of ”metric space” which is a special
kind of ”uniform space”. The theory of metric spaces was deeply developed by the German
mathematician F. Hausdorff [24] (1914) and especially due to the fundamental papers of the
Polish mathematician S. Banach [6] (1920). With the notion of nonmetrizable spaces appeared
idea of creating some natural structure expressing the idea of uniformity and in the first turn
the notion of completeness and uniformly continuous function and constructing research instru-
ment to generalize the metric approach. This situation influenced the French mathematician
A. Weil [45] (1937) to create the theory of uniform spaces. This theory was presented by three
significant classes, more exactly, by the classes of complete, metric and compact (precompact)
spaces.

The theory of uniform spaces in present time has become logically justified, far advanced
due to the fundamental papers of A. Weil, N. Bourbaki, U.M. Smirnov, V.A. Efremovich, A.A.
Borubaev, J. Isbell, B.A. Pasynkov, P. Samuel, V.V. Fedorčuk, Z. Frolik, V. Kulpa, E.V. Shepin,
A.P. Šostak, A.A. Chekeev and others.

Despite of independent character of uniform space it is closely connected with the theory
of topological spaces and between them there is a deep analogy. So the problem of defining
and research of uniform analogies of most important classes of topological spaces and continu-
ous mappings has turned to become not only of current interest but produces fine instruments
to study topological spaces itself. The first problem appeared in finding uniform analogue for
paracompactness. American mathematician M.D. Rice was the first to determine uniformly
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paracompact spaces. But unfortunately this class does not include even the class of metric
spaces. This is a big gap for so constructed class of uniform paracompact spaces. Then Czech
mathematician Z. Frolik [21], American mathematician J. Isbell, Russian (Soviet) mathemati-
cians B.A. Pasynkov [35], A. Aparina [5] and Kyrgyz mathematician B.E. Kanetov [27] offered
different definitions for uniform paracompactness. Analysis of the relationships of all kinds of
paracompact spaces has been performed by B.E. Kanetov. We offered the most successful def-
inition of uniform paracompactness. First of all this class is the widest one, secondly all main
properties of paracompact spaces are carried to this class.

2. Main results

Definition 2.1. [8]. A uniform space (X,U) is said to be uniformly paracompact, if for any
additive open covering γ of the space (X,U) there exists such sequence αn ⊂ U that the following
condition holds: for each point x ∈ X there exists such number n ∈ N and Γ ∈ γ that γn(x) ⊂ Γ.

Each uniformly paracompact space is paracompact and each paracompact spaces with uni-
versal uniformity becomes uniformly paracompact space. The class of uniformly paracompact
spaces contains the class of metric spaces.

Theorem 2.1. [8]. A uniform space (X,U) is uniformly paracompact, if for any additive open
covering ω of (X,U) there is a uniformly continuous ω−mapping f of (X,U) onto some metriz-
able uniform space (Yω,Vω).

Theorem 2.2. [8]. A uniform space (X,U) is uniformly paracompact if and only if for a
compactification bX and each compact K ⊂ bX\X there exists a sequence αn ⊂ U to meet the
following condition: for each point x ∈ X there exist such number n = n(x), that [αn(x)]bX∩K =
∅.

These criteria demonstrate the adequacy of the definition of uniform paracompactness. Sim-
ilarly are defined another significant classes of uniform spaces: uniformly strongly paracompact
spaces, uniformly Lindelöff, uniformly weekly paracompact, uniformly connected, uniformly
pluming, uniformly Čech complete spaces and others. One of the central topics in general
topology is the one closely related to the different kinds of extensions of topological spaces.

P.S. Aleksandroff [1] and M. Stone [42] in their fundamental papers pointed out that one of
the interest and difficult problems of general topology is the study of all extensions of the given
topological space.

P.S. Aleksandroff posed the problem to classify compact extensions. The brilliant solution to
the problem was given by Yu.M. Smirnoff [39] who showed the one-to-one relationship between
proximity structures and compact extensions on given Tychonoff space. Systemizing general
problems B. Banaschewski [7] set the following problem. The problem was to show a common
way for constructing extensions with given beforehand properties.

After the classical works of Yu.M. Smirnoff on the agenda was the construction of extensions
likewise compactness, and in first turn, construction of all paracompact extensions. Bulgarian
mathematicians D. Doichinoff [18] and Zaitsev [46] studied paracompact extensions what is more
the first one used so called ”supertopologies” and the second one used projection spectra. But
the general method for constructing of all extensions likewise compactness by means of uniform
structures has been offered by us.

Definition 2.2. [8]. Let (X,U) be uniform space. The uniformity U is said to be prepara-
compact, if any covering γ ∈ U of X provided γ ∩ F = ∅ for each minimal Cauchy filter F of
(X,U).
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A uniformity U is called strongly preparacompact (Lindelöff ), if U is preparacompact with
the base consisting of starry finite (countable) coverings.

Theorem 2.3. Let X be Tychonoff space. Then there is a one-to-one relationship between all
paracompact (strongly paracompact, Lindelöff) extensions of the space X and all preparacompact
(strongly preparacompact, Lindelöff) uniform structures of X.

Taking into account that for each proximity of space X adequately corresponds some precom-
pact uniformity of the space X then one can say that the Theorem 2.5 is a natural continuation
just previously mentioned results of Yu.M.Smirnov. General approach developed by us allows
to construct other significant extensions likewise compactness such, for example, as pluming
paracompact, Čech-complete paracompact, locally compact paracompact extensions.

No doubt that the theory of uniform spaces can develop successfully only in unity with the
theory of their uniformly continuous mappings. Uniformly factor, uniformly open mappings are
defined in natural way and their theories have been developed successfully. Difficulties appeared
when defining uniform analogue for perfect mappings. In this connection many interesting
results connected with perfect mappings did not get its development in uniform topology and
in the first turn attempts of constructing an absolute of a uniform space failed. But completely
unexpectedly in by form and content way is defined uniformly perfect mapping.

Definition 2.3. [9]. A uniformly continuous mapping f : (X,U) → (Y,V) is called a uniformly
precompact, if for any covering α ∈ U there exist a covering β ∈ V and a finite covering γ ∈ U
such that f−1β ∧ γ Â α.

Uniformly precompact and perfect (in usual sense) mapping will be called as uniformly perfect
mapping.

A uniformly continuous mapping f : (X,U) → (Y,V) will be called complete [10], if any
Cauchy filter F from (X,U) converges provided fF converges in (Y,V).

The following theorem demonstrates the accuracy of such defined notion of uniformly perfect
mapping.

Theorem 2.4. [10]. Uniformly continuous mapping f : (X,U) → (Y,V) is uniformly perfect if
and only if the mapping f is uniformly precompact and complete.

The accuracy and correctness of the definition of uniformly perfect mappings are confirmed
by the category characteristic.

Let us consider the following square in the category Unif .

(X,U) iX−−−−→ (sX, sU)

f

y
ys(f) (?)

(Y,V) −−−−→
iY

(sY, sV),

where (sX, sU) and (sY, sV) are Samuel compact extensions of uniform spaces (X,U) and (Y,V)
respectively, s(f) is an extension mapping of f , iX and iY are uniformly continuous canonical
injections.

Theorem 2.5. [9]. A mapping f : (X,U) → (Y,V) is uniformly perfect if and only if the square
(?) is pullback in the category Unif .

A uniform space (X,U) is said to be strongly uniformly τ−pluming (strongly uniformly
τ−quasi-pluming, respectively) [11], if there exists pseudouniformity V ⊆ U to meet the fol-
lowing conditions:
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(1) w(V) ≤ τ ;
(2) ∩{α(x) : α ∈ V} = Kx is compact (countably compact, respectively) for any x ∈ X;
(3) A system {α(Kx) : α ∈ V} is a neighborhoods fundamental system of Kx in topological

space (X, τu);
(4) U = sup{V,Uβ}.

Assume that pseudouniform space (X,V) is complete and U = sup{V,Uβ}, where Uβ is a
maximal precompact uniformity contained in U then the uniform space (X,U) will be called
strongly uniformly τ−Čech complete.

Theorem 2.6. [11]. Strongly uniformly τ−pluming spaces (strongly uniformly Čech complete
spaces) and only they are mapped onto (complete) τ−metric spaces by means of uniformly perfect
mapping.

The role of uniformly perfect mappings to some extent is revealed by the following theorem.

Theorem 2.7. [8]. Let f : (X,U) → (Y,V) be uniformly perfect mapping ”onto”. Then the
following properties of uniform spaces are direct and inverse invariants:

(1) completeness and index of completeness ≤ τ ;
(2) precompactness and compactness;
(3) τ−boundedness;
(4) uniform local compactness;
(5) uniform τ−paracompactness;
(6) strongly uniform τ−plumings;
(7) strongly uniform τ−Čech-completeness.

The theory of projective objects which arose in homological algebra entered into topology,
more precisely into compact spaces due to the American mathematician A.M.Gleason [22]. But
its great development under convenient and already classic name the theory of absolutes took
place in the papers of V.I.Ponomarev [36].

Uniformly perfect mapping allowed to the first author to define an absolute of uniform spaces.

Definition 2.4. A uniform space (Ẋ, U̇) is said to be an absolute of a uniform space (X,U)
provided the following conditions hold:

(A1) There exists a uniformly perfect irreducible mapping h of the space (Ẋ, U̇) onto the space
(X,U).

(A2) Any uniformly perfect irreducible mapping g of a uniform space (Z,W) onto the uniform
space (Ẋ , U̇) is a uniform isomorphism.

Theorem 2.8. [10]. Any uniform space has the unique absolute. Moreover, an absolute of any
uniform space is an extremally disconnected space.

In present time the theory of absolutes of uniform spaces has been constructed by us and far
advanced. Below cited from this theory only three formulas obtained by the first author.

(1) (sẊ, sU̇) ∼= ((sX)·, (sU)·);
(2) ( ˜̇X, ˜̇U) ∼= ((X̃)·, ( ˜̇U)·);
(3) (vẊ, vU̇) ∼= ((vX)·, (vU)·),

where (sX, sU), (X̃, Ũ), (vX, vU) are Samuel extension, completeness, realcompact extensions
of the uniform space (X,U) respectively.
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At one time S. Iliadis [25] discovered a brilliant formula βẊ ∼= (βX)·. In special case when
we put U = Uβ where is Uβ a maximal precompact uniformity then formulas (1) and (2) become
the formulas of S.Iliadis.

Absolutes of the uniform spaces coincide exactly with the projective objects in the category of
uniform spaces with respect to uniformly perfect mappings. Many wonderful results of a general
topology such as factorization theorems of S. Mardesič, B.A. Pasynkov and A.V. Zarelua theorem
on universal compact of weight τ and dimension n as well as E.V. Shepin’s spectral theorems
all they have uniform characteristics. All these results were generalized and carried to the case
of uniform spaces.

Applications of uniform topology methods in functional analysis.

Let {ρα : α ∈ A} be any family of pseudometrics on X generating the uniformity U (see [29])
and τ is a cardinal of A. By symbol ρτ it is denoted the diagonal of the mappings ρα : X×X →
R+, α ∈ A, i.e. ρτ = 4{ρα : α ∈ A} : X ×X → Rτ

+.
Let (L, T ) be any locally convex linear topological space T and {Pβ : β ∈ B} is any family

of pseudonorms on L (see [40]), µ = |B|. We denote as ‖ · ‖µ the diagonal of the mappings
Pβ : L× L → R+, β ∈ B, i.e. ‖ · ‖µ = 4{Pβ : β ∈ B} : L× L → Rµ

+.
Axiomatization of the mappings ρτ and ‖ · ‖µ brings us to the concepts of τ−metric and

τ−norm.

Definition 2.5. [14]. Let X be nonempty set. A mapping ρτ : X ×X → Rτ
+ is said to be τ−

metric or multimetric on X and a pair (X, ρτ )− τ− metric or multimetric space provided the
following well-known axioms hold:

(1) ρτ (x, y) = θ if x = y, where θ is a point from Rτ
+ with all coordinates equal to 0.

(2) ρτ (x, y) = ρτ (y, x) for any x, y ∈ X.
(3) ρτ (x, y) ≤ ρτ (x, z) + ρτ (z, y) for all x, y, z ∈ X.

The following statement [13] demonstrates the wideness of the class of multimetric spaces and
is a generalization of the classic theorem of A.Weil on metrization of uniform spaces.

A uniform space (X,U) is τ−metrizable, if w(U) = τ .

Definition 2.6. [14]. A mapping ‖ · ‖τ : X → Rτ
+ of a linear space (over R) into Rτ

+ is called
τ− norm or multinorm on linear space X and a pair (X, ‖ · ‖τ ) is τ− normed or multinormed
space if the following conditions hold:

• ‖x‖τ = θ if x is a zero element in linear space X, but θ is a point of Rτ
+ with all

coordinates equal to 0;
(2) ‖λx‖ = λ‖x‖τ for any scalar λ ∈ R and x ∈ X;
(3) ‖x + y‖τ ≤ ‖x‖τ + ‖y‖τ for all x, y ∈ X.

Putting ρτ (x, y) = ‖x− y‖τ in τ−normed space (X, ‖ · ‖τ ) we obtain a τ−metric space.
Metric and normed spaces over topological semifields were studied by the Soviet mathemati-

cians M. Antonovskii, V.G. Boltyanskii and T.A. Sarymsakov [2].

Theorem 2.9. [14]. Let {(Xα, ‖ · ‖τ ) : α ∈ A} be any family of τα−normed spaces. Then
(X, ‖ · ‖τ ) is τ−normed space, where X = Π{Xα : α ∈ A}, ‖x‖τ = {‖x‖τ : α ∈ A}, x = {xα :
α ∈ A}, xα ∈ Xα for each α ∈ A and τ = sup{τα : α ∈ A}.

The famous Kolmogoroff’s theorem [29] on norming of linear topological spaces is generalized
in the following way: Linear topological space is τ−normed if the zero element in X has a base
consisting of τ−many convex neighborhoods.
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Theorem 2.10. [14]. Multinormed (complete multinormed) spaces and only they are the limits
of projective spectra consisting of normed (Banach) spaces.

Definition 2.7. Let X be a linear space (over field of real numbers R). A mapping (·, ·)τ :
X ×X → Rτ is said to be τ− scalar product on linear space X if the following known axioms
hold:

(1) (x, y)τ = (y, x)τ for all x, y ∈ X;
(2) (λx + µy, z)τ = λ(x, z)τ + µ(y, z)τ for any λ, µ ∈ R and x, y, z ∈ X;
(3) (x, y)τ ≥ θ for any x ∈ X and (x, y)τ = θ, if x is a zero element in linear space X and

θ is a point in Rτ with all coordinates equal to 0.

A linear space X with τ scalar (multiscalar) product is called τ−unitary (multiunitary) space.
Each τ−unitary space (X, (·, ·)τ ) turns to be τ−normed space provided τ−norm is defined

as ‖x‖τ =
√

(x, y)τ for all x ∈ X. Here
√

(x, y)τ = {√aα : aα ∈ R, α ∈ A, |A| = τ}, where
(x, y)τ = a ∈ Rτ and a = {aα : aα ≥ 0, α ∈ A}.
Theorem 2.11. Completion of τ−unitary space is τ−unitary space again.

Theorem 2.12. Let {(Xα, (·, ·)τ ), α ∈ A} be any family of (complete) τα−unitary spaces. Then
(X, (·, ·)τ ) is (complete) τ−unitary space, where X = Π{Xα : α ∈ A}, (x, y)τ = {(xα, yα)τ : α ∈
A}, x = {xα : α ∈ A}, y = {yα : α ∈ A}, xα, yα ∈ Xα for any α ∈ A and τ = Σ{τα : α ∈ A}.
Corollary 2.13. Product of (complete) unitary spaces is (complete) unitary space.

Complete multiunitary space will be called multi-Hilbert space.

Theorem 2.14. Multiunitary (multi-Hilbert) spaces and only they are the limits of projective
spectra consisting of unitary (Hilbert) spaces.

The following theorem is a generalization of well-known characteristics of unitary spaces in
the class of normed spaces (see [19]).

Theorem 2.15. Any τ−normed space (X, ‖ · ‖τ ) is τ−unitary if the following equality holds:
‖x + y‖2

τ + ‖x− y‖2
τ = 2(‖x‖2

τ + ‖y‖2
τ ) for all x, y ∈ X.

Applications of uniform topology methods in the theory of topological groups.
Traditionally on topological group (G, ·, τ) are considered three uniformities: left, right and

two-sided ones. There are also another uniformities worth of attention.

Definition 2.8. [8]. A triple (G, ·,U) is said to be a uniform group, if it is both an algebraic
group (G, ·) and a uniform space satisfying to the following conditions:
(UG1) For any two bases of Cauchy filters F1 and F2 in (G,U) the family {E1 · E2 : E1 ∈

F1, E2 ∈ F2} is a base of a Cauchy filter in (G,U).
(UG2) For any base of a Cauchy filter F in (G,U) the family {E−1 : E ∈ F} is a base of a

Cauchy filter in (G,U).

In this case the uniformity U is said to be a group uniformity of group (G, ·).
On topological group (G, ·, τ) there are many group uniformities inducing topology τ , but

two-sided uniformity is a maximal group uniformity.

Theorem 2.16. [8]. Let (G, ·) be an abstract group, U− be any uniformity on group G and
(G̃, Ũ) is a completion of the uniform space (G,U). Then for the group operation ” · ” to
be extended from topological group (G, ·, τ) onto topological group (G̃, ·, τũ) it is necessary and
sufficiently for the triple (G, ·,U) to be uniform group.
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The completions of topological groups with respect to maximal structure, factorization of uni-
form groups and inverse spectra of uniform groups were studied by A.A. Chekeev [12], [16], [17].

I.I. Guran [23] stated the problem of a continuous extendability of group operations of a
topological group G over µG. The problem on characterization of topological groups, whose
completion with respect to the maximal uniform structure is also a group was formulated by
A.V. Arhangel’skii. In other words: If G is a topological group, UG is the maximal uniform
structure on the Tychonoff space G and (µG, ŨG) is the completion of the uniform space (G,UG),
can the group operations (x, y) → x · y and x 7→ x−1 be extended from the group G over µG by
continuity?

A criterion for extendability of the group operations from a group G over its Dieudonne
completion µG, namely, the completion with respect to the maximal uniform structure UG, is
given below.

Definition 2.9. [33]. A filter F is called ℵ0− centered, if ∩F ′ 6= ∅ for any subfamily F ′ ⊂ F of
cardinality |F ′| ≤ ℵ0.

In other words: A uniform space in which every ℵ0− centered Cauchy filter converges is called
ℵ0− complete ( weakly complete in sense K.Morita [33]).

Definition 2.10. [16]. A topological group G is called ℵ0− complete in Raikov sense, if the
uniform space (G,UT ) is ℵ0−complete.

In other words, the two-sided uniform structure UT [15] of the group G is an ℵ0−complete
uniformity.

Definition 2.11. Any ℵ0− complete topological group Gℵ0 containing the group G as an every-
where dense subgroup is called an ℵ0− completion of the group G.

Theorem 2.17. Any topological group G has a unique, to a topological isomorphism, ℵ0−
completion Gℵ0

T in Raikov sense.

Theorem 2.18. Let U be an arbitrary group uniformity on a group G. Then the ℵ0−completion
(Gℵ0 ,Uℵ0) is a group, i.e. the group operations are extended from the group G over Gℵ0 by
continuity.

For convenience, we shall omit the sign of group operation ” · ”.

Theorem 2.19. Let U be an arbitrary group uniformity on a group G. Then the ℵ0−completion
(Gℵ0 ,Uℵ0) of the uniform space (G,U) is homeomophically embedded in the Raikov ℵ0−completion
(Gℵ0

T ,Uℵ0
T ).

Corollary 2.20. For any group uniformity U on group G the ℵ0−completion (Gℵ0 ,Uℵ0) is a
subgroup of the Raikov ℵ0−completion (Gℵ0

T ,Uℵ0
T ).

Remark 2.21. For any uniform space (G,U) the ℵ0−completion (Gℵ0 ,Uℵ0) can be constructed
without accounting the group operations.

Proposition 2.22. Any uniformly continuous mapping of a uniform space (X,U) into an
ℵ0−complete uniform space (Y,V) has uniformly continuous extension f̃ : (X̃, Ũ) → (Y,V)
over the ℵ0−completion (X̃, Ũ) of the uniform space (X,U).

Proposition 2.23. For the fine uniformity UX of a Tychonoff space X the ℵ0−completion
(Xℵ0 ,Uℵ0

X ) is homeomophically embedded into every ℵ0−completion (Xℵ0 ,Uℵ0) of the uniform
space (X,U), where U is any uniformity on X compatible with the topology of the space X.
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Corollary 2.24. For the maximal uniformity UG on a group G the ℵ0−completion (Gℵ0 ,Uℵ0
G )

is homeomorphically embedded into every ℵ0−completion (Gℵ0 ,Uℵ0
G ), where U is an arbitrary

uniformity on the group G.

For Tychonoff space X we denote by U(X) the set of all uniform structures compatible
with the topology of the space X. For each uniformity U ∈ U(X) we have the uniformly
continuous mapping 1 : (X,UX) → (X,U) and its natural uniformly continuous extensions
1̃: (Xℵ0 ,Uℵ0

X ) → (Xℵ0 ,Uℵ0) over the ℵ0−completions. As we noted above (see Proposition
2.34.), the ℵ0−completion (Xℵ0 ,Uℵ0

X ) of the uniform space (X,UX) coincides with the Dieudonne
completion µX of the Tychonoff space X, i.e. it is identical with the uniform space (X̃, ŨX).

For two uniformities U ,V ∈ U(X) such that U ⊂ V we have the uniformly continuous mapping
1VU : (X,V) → (X,V) admitting, uniformly continuous extension 1VU : (Xℵ0 ,Vℵ0) → (Xℵ0 ,Uℵ0)
over the ℵ0−completions. For uniformities U ,V,W ∈ U(X) such that U ⊂ V ⊂ W we have
a natural composition 1VU = 1VW ◦ 1WU of mappings and accordingly 1̃VU = 1̃VW ◦ 1̃WU . Thus, the
inverse system S = {Xℵ0 ,Uℵ0), 1̃VU ,U ⊂ V,U ,V ∈ U(X)} is formed.

Proposition 2.25. (µX, ŨX) = lim←−S.

Corollary 2.26. For maximal uniformity UG on group G the ℵ0−completion (Gℵ0 ,Uℵ0
G ) is

homeomophic embedded to each ℵ0−completion (Gℵ0 ,Uℵ0) for an arbitrary uniformity U on
group G.

Theorem 2.27. For a topological group G the next conditions are equivalent:

(1) The completion (µG, ŨG) is a uniform group.
(2) The set J(G) of all group uniformities forms a confinal part of the set U(G) of all

uniformities.

Definition 2.12. A topological group G is called M−factorizable if for any continuous mapping
f : G → M of the topological group G into a metric space M there exist a metric group H, a
continuous epimorphism h : G → H and a continuous mapping g : H → M such that f = g ◦ h.

Taking into account the definition of R−factorizable topological groups introduced by M.G.
Tkachenko [43], we obtain the next

Proposition 2.28. If a topological group G is ℵ0− bounded and M− factorizable then it is R−
factorizable.

Definition 2.13. Let K be some class of topological groups. A topological group G is called
K− factorizable, if for any continuous mapping f : G → M of the topological group G into a
metric space M there exist a continuous epimorphism h : G → Hh of G onto a topological group
Hh ∈ K and a continuous mapping h : Hh → M such that f = g ◦ h.

Evidently, if K is the class of all metric groups, then K− factorization coincides with M−
factorization.

Theorem 2.29. Let G be a D−factorizable group. Then G ∈ M.

Corollary 2.30. Let G be a M−factorizable topological group. Then G ∈ M.

Corollary 2.31. Let G be an M−factorizable topological group. Then the uniformity UG is a
group uniformity.
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The factorization for continuous homomorphisms of R−factorizable groups was obtained by
M. Tkachenko [43]. Naturally the similar problem arises in the class of uniform groups.

So, it is necessary to find a class M of uniform groups such that any uniformly continuous
homomorphism f : (G,U) → (H,V), where (G,U) ∈ M , is factorizable on uniform weight and
uniform dimension dim.

Definition 2.14. A uniform group (G,U) is said to be uniformly M− factorizable, if for any
uniformly continuous mapping f : (G,U) → M of the uniform group (G,U) into a metric space
M there are a metrizable group (H,V), a uniformly continuous epimorphism h : (G,U) → H,V)
and a uniformly continuous mapping g : (H,V) → M such that f = g ◦ h.

Definition 2.15. A uniform group (G,U) is said to be uniformly R−factorizable, if for any
uniformly continuous function f : (G,V) → R there are an ℵ0−bounded metrizable group (H,V),
a uniformly continuous epimorphism h : (G,U) → (H,V) and a uniformly continuous mapping
g : (H,V) → M such that f = g ◦ h.

Proposition 2.32. Let a topological group G be M−(R)−factorizable. Then the uniform group
(G,UG) where UG is the maximal uniformity, its uniformly M− (R)−factorizable.

Theorem 2.33. For a uniform space (X,U) the following conditions are equivalent:

(1) dimU ≤ n.
(2) For any uniformly continuous mapping f : (X,U) → (Y,V) of a uniform space (X,U)

into a uniform space (Y,V) with weight w(V) ≤ ℵ0 there are a uniform space (Z,W) with
weight w(W) ≤ ℵ0, a surjective uniformly continuous mapping h : (X,U) → (Z,W) and
a uniformly continuous mapping g : (Z,W) → (Y,V) such that f = g ◦h and dimW ≤ n

Remark 2.34. If in the conditions of Theorem 2.48. to assume that the uniform space (X,U)
is ℵ0−bounded, and to replace the uniform weight w by the double uniform weight dw [31] in
item (2), then it can be obtained one more theorem, in which the implication (1) ⇒ (2) follows
from Kulpa’s factorization theorem [31] and the implication (2) ⇒ (1) can be proved by analogy.

Theorem 2.35. For an ℵ0−bounded uniform space (X,U) the following conditions are equiva-
lent:

(1) dimU ≤ n.
(2) For any uniformly continuous mapping f : (X,U) → (Y,V) of the uniform space (X,U)

to a uniform space (Y,V) of double weight dw(V) ≤ ℵ0 there exist a uniform space (Z,W)
of double weight dw(W) ≤ ℵ0, a surjective uniformly continuous mapping h : (X,U) →
(Z,W) and a uniformly continuous mapping g : (Z,W) → (Y,V) such that f = g ◦h and
dimW ≤ n.

Let uniformly continuous mappings f : (X,U) → (Y,V) and g : (X,U) → (Z,W) be given.
By analogy with [43], we will write g ≺ f , if there is a uniformly continuous mapping h :
(g(X),W|g(X)) → (Y,V) such that f = h ◦ g.

Proposition 2.36. Let (X,U) be a uniform space and for each i ∈ N uniformly continuous
mapping fi : (X,U) → (Yi,Vi) be given, where fi+1 ≺ fi, w(Vi) ≤ ℵ0 and dimVi ≤ n for all
i ∈ N. If f = 4{fi : i ∈ N}, Y = f(X) ⊂ ∏{Yi : i ∈ N} and V = Y ∧∏{Vi : i ∈ {N}, then
dimV ≤ n.

Remark 2.37. In the framework of the weight w(Vi), i ∈ N, may be replaced by double weight
dw. In that case the statement holds too.
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Proposition 2.38. Let f : (G,U) → (X,W) be a uniformly continuous mapping of an M−
factorizable uniform group (X,U) into a uniform space (X,W) of weight w(W) < ℵ0. Then
there are a uniform group (H,V) of weight w(W) ≤ ℵ0, a uniformly continuous epimorphism
h : (G,U) → (H,V) and a uniformly continuous mapping g : (H,V) → (X,W) such that f = g◦h
and dimV ≤ dimU .

Theorem 2.39. Let any uniformly continuous homeomorphic image of a uniform group (G,U)
be uniformly M−factorizable and let h : (G,U) → (H,V) be a uniformly continuous epimorphism
of the uniform group (G,U) onto a uniform group (H,V). Then there exist a uniform group
(G∗,U∗) and uniformly continuous epimorphism h1 : (G∗,U∗) → (H,V) and h2 : (G,U) →
(G∗,U∗) such that g = h1 ◦ h2, and w(U∗) ≤ w(V).

The inverse spectra method takes up an important place in general topology. By means
of inverse spectra an approximation of various properties of spaces by properties of ”simpler”
construction spaces. It is to note that the method of inverse spectra takes up the central place
in investigations of compacts with non-countable weight, where the E.V. Shchepin spectral
theorem [41] plays an important role.

Spectral characteristics for various spaces were found by B.A. Pasynkov [34]. The spectral
theorem was proven by Kulpa [31] for uniform spaces and was done by A.A. Borubaev [8] for
uniformly continuous mappings.

Conditions of expandability of uniform groups into inverse group spectra are given below.
Let M be a directed set and each a ∈ M define any uniform group (Ga,Ua). For each indexes

a, b ∈ M , such that a ≤ b, a uniformly continuous homomorphism f b
a : (Gb,Ub) → (Ga,Ua) is

defined, and f b
c = fa

c ◦ f b
a for all indexes a, b, c ∈ M such that c ≤ a ≤ b and fa

a = 1G for all
a ∈ M .

Definition 2.16. A family S = {(Ga,Ua), f b
a,M} is said to be an inverse system of uniform

groups (Ga,Ua), a ∈ M with connecting uniformly continuous homomorphisms f b
a.

Definition 2.17. An element {ga : a ∈ M} of the product
∏{Ga : a ∈ M} is said to be a thread

of the inverse spectrum of uniform groups S = {(Ga,Ua), f b
a,M}, if f b

a(gb) = ga for all indexes
a, b ∈ M , such that a ≤ b.

Definition 2.18. The subspace of the uniform space
∏{(Ga,Ua) : a ∈ M}, consisting of all

threads of the inverse spectrum of uniform groups S, is said to be a limit of inverse spectrum of
uniform groups S = {(Ga,Ua), f b

a, M} and is denoted as lim←−S or lim←−{(Ga,Ua), f b
a,M}.

Proposition 2.40. The limit of inverse spectrum of uniform groups S = {(Ga,Ua), f b
a,M} is a

closed uniform subgroup of group product of uniform groups
∏{(Ga,Ua) : a ∈ M}.

Proposition 2.41. The family of all coverings π−1
a (αa) where αa is a uniform covering of a

group uniformity Ua, and a ∈ M ′, where M ′ is confinal to the set M , is a base of the group
uniformity U of the limit of the inverse spectrum of uniform groups S = {(Ga,Ua), f b

a,M}.
Lemma 2.42. Let {ϕ, fa′} be a mapping of an inverse group spectrum S = {Ga, f

b
a,M} to an

inverse group spectrum S′ = {Ha′ , f
b′
a′ , M

′}. If all homomorphisms fa′ are monomorphic, then
the limit homomorphism f = lim←−{ϕ, fa′} is monomorphic too. Also, if all homomorphisms fa′

are epimorphic, then the limit homomorphism f = lim←−{ϕ, fa′} is an epimorphism.

Proposition 2.43. Let {ϕ, fa′} be a mapping of an inverse spectrum of uniform groups S =
{(Ga,Ua), f b

a,M} to an inverse spectrum of uniform groups S′ = {(Ha′ ,Ua′), f b′
a′ ,M

′}. If all
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homomorphisms fa′ are uniform group isomorphisms, then the limit mapping f = {ϕ, fa′} is
also uniform a group isomorphism.

Corollary 2.44. Let S = {(Ga,Ua), f b
a,M} be an inverse spectrum of uniform groups and

M ′ be confinal to the set M . The mapping which is the restriction of all threads of the group
(G,U) = lim←−S onto M ′,is a uniform group isomorphism of the uniform group (G,U) onto the
uniform group (G′,U ′) = lim←−S′, where S′ = {(Ga′ ,Ua′), f b′

a′ ,M
′}.

Corollary 2.45. Let S = {(Ga,Ua), f b
a,M} be an inverse spectrum of uniform groups and there

exists the greatest element a0 ∈ M in a directed set M . Then the uniform group (G,U) = lim←−S

is uniformly isomorphic to the uniform group (Ga0 ,Ua0).

Let (G,U) be a uniform group, {Ha : a ∈ M} be a decreasing family of normal subgroups
of the group G. Consider the family {(G/Ha,U/Ha) : a ∈ M} of uniform factor-groups and
denote Ga = G/Ha and Ua = U/Ha. For a ≤ b we have Ha ⊇ Hb, it defines the natural
mapping f b

a : Gb → Ga, transforming each class T of the group Gb to a class THa in a group
Ga. It is easy to see that the mapping f b

a with a ≤ b is uniformly continuous homomorphism
of the uniform group (Gb,Ub) onto the group (Ga,Ua). By such a way the inverse spectrum
S = {(Ga,Ua), f b

a,M} of uniform groups is defined. Denote (G̃, Ũ) = lim←−S. For each a ∈ M the
canonical uniformly continuous homomorphism fa : (G,U) → (Ga,Ua) is defined. Then for each
point x ∈ G the mapping i = 4fa(x) = {fa(x) : a ∈ M} implements a uniformly continuous
homomorphic embedding of the uniform group (G,U) to the uniform group (G̃, Ũ) under the
condition that for any uniform covering a ∈ U there exists such index a ∈ M that the partition
{xHa : x ∈ G} is refined to the covering α.

Actually, let x, y ∈ G and x 6= y. Then there exist such uniform covering a ∈ U and A ∈ α

that x and y do not belong to A simultaneously, then fa(x) = xH and fa(y) = yH do not
belong to fA(x) = AH simultaneously. Thus, the homomorphism i is injective and implements
an algebraic isomorphism of the group G onto the group i(G). Let us prove that i is a uniform
homeomorphism.

Let ã ∈ Ũ be an arbitrary uniform covering of the group G̃. Then Lemma 2.60. implies αa =
fa(a) ∈ Ua for all a ∈ M . Further, Proposition 2.59. implies that for each a ∈ M the covering
π−1

a (αa) = π−1
a (f(αa)) is uniform, i.e. π−1

a (αa) ∈ U , where πa : (G̃, Ũ) → (Ga,Ua). Thus, we
have the following commutative diagram: This implies that fa = πa ◦ i or i(a) = π−1

a (f(αa)).

Thus, for all open uniform coverings α ∈ U i(a) is a uniform covering of Ũ |i(G).
Let U ⊂ G̃ be an arbitrary open set in the group G̃. Then there exist such index a ∈ M and

non-empty open set Ua ⊂ Ga that π−1
a (Ua) ⊂ U , and, consequently, i−1(U) ⊃ f−1

a (Ua). But fa

is surjective, hence, i−1(U) is not empty, i.e. i(G) ∩ U 6= ∅. Thus it is proven that i(G) is an
everywhere dense subgroup of the group G̃.

Now suppose that for each a ∈ M the normal subgroup Ha is complete with respect to the
uniformity U|Ha and {Ta : a ∈ M} = ẋ is an arbitrary element of the group G̃. Being obtained
from Ha by means of a transfer, Ta is a complete subspace of the uniform space (G,U). Thus,
for each uniform covering a ∈ U there exists such index c ∈ M that the partition {xHc : x ∈ G}
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is refined to α. It means that Tc ⊂ A for some A ∈ α. Consequently, the set of Tc ∈ ẋ belonging
to Ta forms a base of a Cauchy filter which converges to any point x ∈ Ta ⊂ G in the uniform
space (Ta,U|Ta). Therefore, the uniformly isomorphic embedding turns out to be surjective in
this case. Thus the following theorem is above proved

Theorem 2.46. Let (G,U) be a uniform group, {Ha : a ∈ M} be a decreasing family of normal
divisors of the group G, fulfilling the following condition:

(??) For each index a ∈ M , Ha is closed in (G, τU ) and for each uniform covering α ∈ U
there exists such index a ∈ M , that the partition {xHa : x ∈ G} is refined to α.

Then the uniform group (G,U) is uniformly isomorphically embedded into the group (G̃, Ũ).
Also, if (Ha,U|Ha) is a complete uniform space for some a ∈ M that the uniform groups (G,U)
and (G̃, Ũ) are uniformly isomorphically.

Corollary 2.47. If the condition (??) holds and all uniform groups (Ga,Ua) are complete, then
the uniform group (G,U) has the completion, identified with the uniform group (G̃, Ũ).

Actually, the uniform group (G̃, Ũ) is complete as a closed uniform subspace of the product∏{(Ga,Ua) : a ∈ M} of complete uniform spaces (Ga,Ua). According to the uniform group
(G,U) is uniformly isomorphically and everywhere dense embedded into the uniform group
(G̃, Ũ), hence, its completion is the uniformly isomorphically uniform group (G̃, Ũ).

Some spectral characteristics of τ−balanced and τ−bounded topological groups will be given
below. Their two-sided uniformities are group, therefore they realize Theorem 2.64., and they
can be derived from it. But we are interested in a direct construction of them.
ℵ0−balanced groups, named as groups with a quasi-invariant base, were firstly introduced by

G.A. Kats [28], and τ−bounded groups were done by I.I. Guran [23].
Subgroups of products of topological groups of character ≤ τ and of weight ≤ τ are said to be

τ−balanced and τ−bounded correspondingly. There are ”inner” definitions of τ−balanced and
τ−bounded topological groups.

Definition 2.19. Let V be a neighborhood of the unit of a topological group G. A system
{Va : a ∈ A} of neighborhoods of the unit is said to be quasi-invariant base with respect to the
neighborhood V , if for each g ∈ G there exists such index a ∈ A that g−1Vag ⊆ V .

A topological group G, is said to be τ−balanced, if each neighborhood of its unit has a quasi-
invariant base of cardinality ≤ τ .

Definition 2.20. [23]. A topological group G is said to be τ−bounded, if for each neighborhood
of the unit V there exists such set MV ⊂ G, |MV | ≤ τ , that MV · V = G.

A filter F is said to be τ−centered, if the intersection of its each subfamily of cardinality ≤ τ

is nonempty.

Definition 2.21. A τ−centered Cauchy filter, with respect to two-sided uniformity of a topo-
logical group G, is said to be Cauchy τ−filter, and a topological group, in which all Cauchy
τ−filters converges, is said to be τ−complete.

The following theorem gives the characteristics of closed subgroups of products of groups of
character ≤ τ .

Theorem 2.48. For a topological group G the following conditions are equivalent:

(1) A group G is τ−balanced and τ−complete;
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(2) A group G is the limit of the inverse spectrum S = {Ga, f
b
a, M}, where χ(Ga) ≤ τ for

all a ∈ M , f b
a are continuous homomorphisms and M is a τ−complete index set;

(3) A group G is closely and topological isomorphically embedded into the product
∏{Ga :

a ∈ M}, where χ(Ga) ≤ τ for all a ∈ M .

Corollary 2.49. For a topological group G the following conditions are equivalent:

(1) A group G is ℵ0−balanced and ℵ0−complete;
(2) A group G is the limit of an inverse spectrum S = {Ga, f

b
a,M},where is a metrizable

group for all a ∈ M , f b
a are continuous homomorphisms and M is a ℵ0−complete index

set;
(3) A group G is closed and topologically isomorphically is embedded into a product

∏{Ga :
a ∈ M}, where Ga is a metrizable topological group for all a ∈ M .

Corollary 2.50. ℵ0−completion of ℵ0−balanced topological group G is the limit of the inverse
spectrum S = {Ga, f

b
a,M}, where Ga is a metrizable group for all a ∈ M , f b

a are continuous
homomorphisms and M is a ℵ0−complete index set.

Corollary 2.51. For a balanced group G with χ(G) > τ , where τ is an infinite cardinal, the
following conditions are equivalent:

(1) A group G is τ−complete;
(2) A group G is the limit of an inverse spectrum S = {Ga, f

b
a,M}, where Ga is a balanced

topological group, χ(Ga) ≤ τ for all a ∈ M , f b
a, is a continuous homomorphisms and M

is a τ−complete index set;
(3) A group G is closed and is topologically isomorphically embedded into the product

∏{Ga :
a ∈ M}, where Ga is a balanced topological group, χ(Ga) ≤ τ for all a ∈ M .

Theorem 2.52. For a topological group G the following condition are equivalent:

(1) A group G is τ−bounded and is τ−complete;
(2) A group G is the limit of an inverse spectrum S = {Ga, f

b
a,M}, where w(Ga) ≤ τ for all

a ∈ M , f b
a, are continuous homomorphisms and M is a τ−complete index set;

(3) A group G is closed and is topologically isomorphically embedded into the product
∏{Ga :

a ∈ M}, where w(Ga) ≤ τ for all a ∈ M .

Corollary 2.53. For a topological group G the following conditions are equivalent:

(1) A group G is ℵ0−bounded and is ℵ0−complete;
(2) A group G is the limit of an inverse spectrum S = {Ga, f

b
a,M}, where Ga is a sepa-

rable metrizable group for all a ∈ M , f b
a are continuous homomorphisms and M is a

ℵ0−complete index set;
(3) A group G is closed and is topologically isomorphically embedded into the product

∏{Ga :
a ∈ M}, where Ga is a separable metrizable group for all a ∈ M .
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