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VALUE PROBLEMS FOR POLYHARMONIC EQUATIONS IN
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Abstract. A priori estimates are derived for solutions to Dirichlet problem for polyharmonic

equations in bounded smooth domains. A problem in generalized Morrey spaces is considered.

Based on a priori estimates, the solvability of this problem in generalized Morrey spaces is

proved. Similar problem for higher order uniformly elliptic equations is considered. Also,

Lp,λ − Lq,λ regularity estimates are obtained.
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1. Introduction

The classical Morrey spaces Lp,λ have been originally introduced to study the local behavior

of solutions to elliptic partial differential equations. In fact, the better inclusion between the

Morrey and Holder spaces permits to obtain regularity of the solution to elliptic boundary

problems.

For the properties and applications of the classical Morrey spaces we refer the readers to [22,

24].

In [7], Chiarenza and Frasca showed boundness of the Hardy-Littlewood maximal operator in

Lp,λ(R
n) that allows to prove continuity of fractional and classical Calderon-Zygmund operators

in these spaces and solvability of boundary value problem.

In [21], Mizuhara gave a generalization of these spaces considering a weight function ω(x, r) :

Rn × R+ → R+ instead of rλ. He studied also a continuity in Lp,ω of some classical integral

operators. Later Nakai extended the results of Chiarenza and Frasca in Lp,ω imposing some

integral and doubling conditions on ω [23]. Taking a weight ω = φprn, the conditions of

Mizuhara-Nakai become∫ ∞

r
φp(x, t)

dt

t
≤ Cφp(x, r), C−1 ≤ φ(x, t)

ψ(x, t)
≤ C,∀r ≤ t ≤ 2,

where the constants do not depend on t, r and x ∈ Rn.

Guliyev studied the continuity of sublinear operators in generalized Morrey spaces generated

by various integral operators such as the ones of Calderon-Zygmund, Riesz, etc [3, 17, 18]. These

results extend the results of Nakai to Morrey-type spaces which are called generalized Morrey

spaces. These are new functional spaces, for their applications in the differential equations

theory see [19] and the references therein.
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2. Definitions and problem statement

The domain Ω ∈ Rn, n ≥ 2 is supposed to be bounded with ∂Ω ∈ C1,1.

Definition 2.1. Let φ : Ω × R+ → R+ be a measurable function and 1 ≤ p ≤ ∞. For

any domain Ω, the generalized Morrey space Mp,φ(Ω) (the weakly generalized Morrey space

WMp,φ(Ω)) consists of all f ∈ Lloc
p (Ω)

∥f∥Mp,φ(Ω) = sup
x∈Ω,0<r<d

φ−1(x, r) r−n/p ∥f∥Lp(Ω(x,r)) <∞,

(
∥f∥WMp,φ(Ω) = sup

x∈Ω,0<r<d
φ−1(x, r) r−n/p ∥f∥WLp(Ω(x,r)) <∞

)
,

where d = supx,y∈Ω |x− y|, B(x, r) = {y ∈ Rn : |x− y| < r} and Ω(x, r) = Ω ∩B(x, r).

In the case of φ(x, r) = r
λ−n
p , the generalized Morrey space Mp,φ (the weakly generalized

Morrey space WMp,φ) is a classical Morrey space Lp,λ (classical weak Morrey space WLp,λ).

Definition 2.2. The generalized Sobolev-Morrey space W2,p,φ(Ω) consists of all Sobolev func-

tions u ∈W2,p(Ω)with distributional derivatives Dsu ∈Mp,φ(Ω), endowed with the norm

∥u∥W2,p,φ(Ω) =
∑

0≤|s|≤2

∥Dsf∥Mp,φ(Ω)

The space W2,p,φ(Ω)
∩ 0
W
p,φ

(Ω) consists of all functions u ∈ W2,p(Ω)
∩ 0
W 1,p(Ω) with Dsu ∈

Mp,φ(Ω), and is endowed with the same norm. Recall that
0
W 1,p(Ω) is the closure of C∞

0 (Ω)

with respect to the norm in W1,p(Ω).

Before the Dirichlet boundary value problem for polyharmonic equation, we consider

(−∆)mu = f inΩ (1)

u =
∂u

∂ϑ
= ... =

∂m−1u

∂ϑ
= g on ∂Ω,

where Ω ⊂ Rn, n ≥ 2 is a bounded domain with sufficiently smooth boundary.

Note. For simplicity, we will denote L = (−∆)m in (1),but in fact the estimates that we will

derive hold for any uniformly elliptic operator L of order 2m.

Now we give estimates for the Green function and the Poisson kernels for the solutions of

the problem (1). Later we will obtain a priori estimates for the solution and the solvability of

problem (1) in generalized Morrey spaces.

Let Gm(x, y) be the Green function and Kj(x, y), j = o,m− 1 be the Poisson kernels of

problem (1). Then the solution of problem (1) can be written as

u(x) =

∫
Ω
Gm(x, y)f(y)dy +

m−1∑
j=0

∫
∂Ω
Kj(x, y)g(y)dσy

for corresponding f and g.

For example, when m = 2 and n = 2 it is known that there is a constant C(Ω) such that

|G2(x, y)| ≤ C(Ω)d(x)d(y)min

{
1,
d(x)d(y)

|x− y|2

}
, (2)
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where d is the distance between x and the boundary ∂Ω:

d(x) = inf
˜̃x∈∂Ω

|x− x̃| . (3)

However,we would like to mention that for Gm and Kj the estimates are optimal for deriving

regularity results in spaces that involve to behavior at the boundary. Coming back to the

m = n = 2 it follows from (2) that the solution of problem (1) satisfies for appropriate f at

g = 0

∥∥ud2∥∥
L∞(Ω)

≤ C(Ω) ∥f∥L1(Ω) ,

∥u∥L∞(Ω) ≤ C(Ω)
∥∥fd2∥∥

L1(Ω)
.

For general m and n , Lp,λ- Lq,λ estimates will be also obtained.

A special case for m = 1 has been considered in [13].

We will derive estimates also for the kernels of derivatives. We also will focus on the estimates

that contain growth rates near the boundary. These estimates will be optimal. Indeed, when

we consider Gm(x, y) for the balls Ω = B (x, r) ⊂ Rn, the growth rates near the boundary are

sharp [14]. For m = 1 or m ≥ 2 and Ω = B(x, r) it is known that the Green function is positive

and can even be estimated from below by a positive function with the same singular behavior

[15]. Let us remind that for m ≥ 2 the Green function in general is not positive. For general

domains the optimal behavior in absolute values is reflected in our estimates. Sharp estimates

for Km−1 and Km−2 in case of a ball can be found in [16]. By integrating pointwise the estimates

for parabolic kernel p(t, x, y) with respect to t from 0 to ∞, pointwise estimates for the Green

function have been obtained by Barbatis in [4] who considered higher order parabolic problems

on domains and derived pointwise estimates for kernels. Classical estimates by Eidelman [12]

for higher order parabolic systems do not cover domains with boundary. For a survey of spectral

theory of higher order elliptic operators, including some estimates for the corresponding kernels,

we refer the readers to [10].

The paper is organized as follows. We give in Section 1 some information about previous

results. In Section 2 we give some definitions. In Section 3 we obtain the estimates for the

Green function and the Poisson kernels. In Section 4 we will show applications of our results to

regularity estimates in weighted spaces, solvability in generalized Morrey spaces. In Section 5

we prove the solvability of uniformly elliptic boundary problem in a general Morrey space.

Proposition 2.1. ([15]) Let f and g be functions on Ω×Ω with g ≥ 0. Then we denote f ∼ g

on Ω× Ω if and only if there are C1, C2 > 0 such that

C1f(x, y) ≤ g(x, y) ≤ C2f(x, y) for all x, y ∈ Ω.

Let f be a function on Ω× Ω and α, β ∈ Nn. Derivatives of f are denoted as

Dα
xD

β
y f(x, y) =

∂|α|

∂xα1
1 ∂xα2

2 · ... · ∂xαn
n

· ∂|β|

∂yβ1
1 ∂y

β2
2 · ... · ∂yβn

n

f(x, y),

where |α| =
∑n

k=1 αk, |β| =
∑n

k=1 βk. Now we give some auxillary results.

Theorem 2.1. ([9],[24]). Let Gm(x, y) be the Green function of the problem (1). Then for

every x, y ∈ Ω the following estimates hold:

1. if 2m− n > 0, then
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|Gm(x, y)| ≤ dm− 1
2
n(x) · dm− 1

2
n(y)min

(
1,
d(x)d(y)

|x− y|2

) 1
2
n

,

if 2m− n = 0, then

|Gm(x, y)| ≤ log

(
1 +

(
1,
d(x)d(y)

|x− y|2

)m)
,

3. if 2m− n < 0, then

|Gm(x, y)| ≤ |x− y|2m−nmin

(
1,

(
1,
d(x)d(y)

|x− y|2

)m)
.

Theorem 2.2. ([9],[20]) Let Kj(x, y), j = 0,m− 1 be the Poisson kernels of the problem (1).

Then for every x ∈ Ω, y ∈ ∂Ω the following estimates holds:

|Kj(x, y)| ≤
dm(x)

|x− y|n−j+m−1
. (4)

Remark 2.1. If n− 1 < j ≤ m− 1, then from (4) we get on Ω× ∂Ω

|Kj(x, y)| ≤ d1+j−n(x). (5)

Remark 2.2. The estimates in Theorems 2.2 hold for any uniformly elliptic operator of order

2m.

In [15] the estimates as in Theorem 2.1 are given for the case Ω = B(x, r) in Rn. The authors

in [15] used the explicit formula for the Green function given in [5].

For general domains one cannot expect an explicit formula and instead we will proceed by

the estimates for Gm(x, y) and Kj(x, y) given in [9], [20]. For sufficiently regular domains Ω, the

authors in [9] and [20] proved that the Green function and Poisson kernels exist and obtained

estimates for these functions.

We will prove estimates for G
(x,y)
m and Kj(x, y) depending on the distance to the boundary.We

will do so by estimating the j-th derivative through an integration of the (j + 1)-th derivative

along a path to the boundary. Distance to the boundary d(x) will depend on the proportionality

between the arch which joins internal point with the boundary. The arch will be constructed

explicitly in Lemma 2.1.

In the following lemma we state the existence of such an arch.

Lemma 2.1. Let x ∈ Ω and y ∈ Ω. There exists a curve γyx : [0, 1] → Ω with γyx(0) = x, γyx(1) ∈
∂Ω such that

1. |γyx(t)− y| ≥ 1

2
|x− y| , for every t ∈ [0, 1], (6)

2. l ≤ (1 + π)d(x), where l is the length of γyx. (7)

Moreover, let γ̃yx : [0, l] → Ω be the parametrization by arch length of γyx. The following

estimate holds:

3.
1

5
S ≤ |x− γ̃yx(s)| ≤ S for s ∈ [0, l]. (8)
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We proceed with the proof of Theorem 2.1 and start from the estimates in [20] of the m-th

derivative of Gm(x, y).

Integrating this function along the arch γyx of Lemma 2.1, we find the estimates of the (m−1)-

th derivative of Gm(x, y) in terms of the distance to the boundary. Iterating the procedure m

times we find the results as stated in Theorem 2.1.

Later we use some auxiliary results which can be easily obtained from [20]. By these results

we prove the following theorem.

Theorem 2.3. ([9],[20]) Let Gm(x, y) be the Green function for the problem (1), k ∈ Nn. Then

for every x, y ∈ Ω the following estimates hold:

1. For |k| ≥ m: if 2m− n− |k| < 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C |x− y|2m−n−|k|min

(
1,

d(y)

|x− y|

)m

;

if 2m− n− |k| = 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C log

(
1 +

dm(y)

|x− y|m
)

∼

∼ log

(
2 +

d(y)

|x− y|

)
min

(
1,

d(y)

|x− y|

)m

; (9)

if 2m− n− |k| > 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ Cd2m−n−|k|(y)min

(
1,

d(y)

|x− y|

)n+|k|−m

.

2. For |k| < m: if 2m− n− |k| < 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C |x− y|2m−n−|k|min

(
1,

d(x)

|x− y|

)m−|k|
min

(
1,

d(y)

|x− y|

)m

.

if 2m− n− |k| = 0, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ C log

(
1 +

dm(y)dm−|k|(x)

|x− y|2m−|k|

)
∼ log

(
2 +

d(y)

|x− y|

)
×

×min

(
1,

d(y)

|x− y|

)m

min

(
1,

d(x)

|x− y|

)m−|k|
; (10)

If 2m− n− |k| > 0, and moreover

a) m− n

2
≤ |k|, then

∣∣∣Dk
xGm(x, y)

∣∣∣ ≤ Cd2m−n−|k|(y)min

(
1,

d(x)

|x− y|

)m−|k|
min

(
1,

d(y)

|x− y|

)n−m+|k|

b) |k| < m− n

2
, then

|Dk
xGm(x, y)| ≤ C · d(y)m−n

2 d2m−n
2
−|k|(x)min

(
1,
d(x)d(y)

|x− y|2

)n
2

.
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Proof. Let x, y ∈ Ω. We use the estimates for derivatives of Gm(x, y) from [9]. The estimates

for the lower order derivatives of Gm(x, y) will be obtained by integrating the higher order

derivatives along the arch γyx by means of Lemma 2.1. For example, with α, β ∈ Nn and

x̃ ∈ ∂Ω, for the end point of γyx, we find

Dα
xD

β
yGm(x, y) = Dα

xD
β
yGm(x̃, y) +

∫
γy
x

∇zD
α
zD

β
yGm(z, y)dz. (11)

If |α| ≤ m− 1, then the first term on the right-hand side of (11) equals to zero and we get

∣∣∣Dα
xD

β
yGm(x, y)

∣∣∣ ≤ l∫
0

∣∣∣∇xD
α
xD

β
yGm(γyx(s), y)

∣∣∣ ds. (12)

If |β| ≤ m− 1, then similarly by integrating with respect to y we find

∣∣∣Dα
xD

β
yGm(x, y)

∣∣∣ ≤ l∫
0

∣∣∣∇yD
β
yD

α
xGm(x, γxy(s)

∣∣∣ ds (13)

We take H(x, y) = Dα
xD

β
yGm(x, y) and depending on |k| = r we choose α and β.

We distinguish the cases as in the statement of the theorem. For example,

Case 1. r ≥ m. Let β ∈ Nn with |β| = m − 1. Then from (13) with k = α and using the

estimates from [20], we get

|Dα
xD

β
yGm(x, y)| ≤ |x− y|m−n−r .

Case 2. r < m. Also, using the estimates from [20] for
∣∣∣Dβ

yDα
xD

k
xGm(x, y)

∣∣∣ and then

integrating m times with respect to y and m − r times with respect to x, we get the desired

result.

Theorem is proved. �

Remark 2.3. Theorem 2.1 holds in case where there is no symmetry between x and y.

Lemma 2.2. Let v1, k ∈ N with k ≥ 2. If

|∇xH(x, y)| ≤ C1 |x− y|−k dv1(x)

for x ∈ Ω, y ∈ ∂Ω and H(x̃, y) = 0 for every x̃ ∈ ∂Ω with x̃ ̸= y, then the following inequality

holds:

|H(x, y)| ≤ C1 |x− y|−k dv1+1(x)

for x ∈ Ω, y ∈ ∂Ω.

Using auxiliary results stated above, we can easily prove this lemma.

The lemma above allows us to prove the following theorem which is a special case of Theorem

2.2.

Theorem 2.4. ([9],[20]) Let Kj(x, y), j = 0,m− 1 be the Poisson kernels of the problem (1).

Let α ∈ Nn with |α| ≤ m− 1. The following estimate holds for x ∈ Ω, y ∈ ∂Ω:

|Dα
xKj(x, y)| ≤ C2

dm−|α|(x)

|x− y|n−j+m−1
.
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Remark 2.4. The estimates of Dα
xKj(x, y) for |α| ≥ m can be found in [9]. The following

estimate holds:

|Dα
xKj(x, y)| ≤ C3 |x− y|−n+j−|α|+1 .

3. Estimates for the solution

Now we will derive regularity estimates for solution of problem (1) when g = 0:{
(−∆)mu = f in Ω ,(

∂
∂n

)k
u = 0 on Ω ,

(15)

where 0 ≤ k ≤ m − 1, Ω ⊂ Rn is bounded. First we recall an estimate involving the Riesz

potential. Define Kj(x) = |x|−γ and

(Kγ ∗ f)(x) =
∫
Ω

|x− y|−γ f(y)dy.

The following lemma holds.

Lemma 3.1. Let Ω ⊂ Rn be bounded, γ < n and 1 < p <
n− λ

γ
. Then condition

1

p
−1

q
=

γ

n− λ
is necessary and sufficient for the boundedness of Kγ ∗ f from Lp,λ(Ω) to Lq,λ(Ω) and there is

C4 > 0 such that for all f ∈ Lp

∥Kγ ∗ f∥Lq,λ(Ω) ≤ C4 ∥f∥Lp,λ(Ω) . (16)

As a consequence of the pointwize estimates and using Lemma 3.1, we next state the optimal

Lp,λ → Lq,λ-regularity results mentioned before.

Let us recall that d(·) is the distance function defined in (3).

Proposition 3.1. Let u ∈ C2m(Ω) and f ∈ C(Ω) satisfy the conditions of the problem (15).

1. If 2m > n, then there exists k1 > 0 such that for all θ ∈ [0, 1]∥∥∥d(·)−m+θnu
∥∥∥
L∞(Ω)

≤ K1

∥∥∥d(·)m−(1−θ)nf
∥∥∥
L1(Ω)

. (17)

2. Let 1 < p <
n− λ

γ
. If

(
1

p
− 1

q

)
=

γ

n− λ
< min

{
2m

n
, 1

}
,

α ∈
{(

1

p
− 1

q

)
=

γ

n− λ
, min

{
1,

2m

n

}}
.

Then there exists k2 > 0 such that for all θ ∈ [0, 1]∥∥∥d(·)−m+θ·n·αu
∥∥∥
Lq,λ

≤ K2

∥∥∥d(·)m−(1−θ)n·αf
∥∥∥
Lp,λ

. (18)

Remark 3.1. Note that the shift in the exponent of d(·) between the right and left hand

side of (18) is 2m− nα , u ∈ C2m(Ω). Hence the shift increases when α tends to
1

p
− 1

q
.

Remark 3.2. The conditions u ∈ C2m(Ω) and f ∈ C(Ω) may be considerably weakened for

each of the estimates by using a density argument.

Remark 3.3. The estimate in (17) is sharp and does not seem to follow through embedding

results. Such estimates will also from the regularity results in case of the problem for L.
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Remark 3.4. In a similar way one may also derive estimates for boundary behavior of

derivatives. For example, if n = m = 2, one finds with θ ∈ [0, 1]∥∥∥d−1+2θ(·)Dxu
∥∥∥
L∞(Ω)

≤ K3

∥∥∥d−2θ(·)f
∥∥∥
L1(Ω)

.

4. Estimates for solutions in generalized Morrey spaces

First, we recall a definition of generalized Sobolev-Morrey space.

Definition 4.1. The generalized Sobolev-Morrey space W 2m
p,φ (Ω) consists of all Sobolev functions

u ∈W 2m
p (Ω) with distributional derivatives Ds

u ∈Mp,φ(Ω), endowed with the norm

∥u∥W 2m
p,φ(Ω) =

∑
0≤|s|≤2m

∥Dsu∥Mp,φ(Ω) .

The spaceW 2m
p,φ (Ω)∩

◦
W 1

p(Ω) consists of all functions u ∈W 2m
p (Ω)∩

◦
W 1

p(Ω) with D
s
u ∈Mp,φ(Ω)

endowed with the same norm. Recall that
◦
W 1

p(Ω) is the closure of C∞
0 (Ω) with respect to the

norm in W 1
p (Ω).

Now we get the estimates for the solution of problem (1) in generalized Morrey spaces with

g = 0:

∥u∥W 2m
p,φ1

(Ω) ≤ C ∥f∥Lp,φ2(Ω)
.

Note that

Kf(x) = lim
ε→0

∫
|x−y|>ε

∑
|α|=2m

Dα
xi
Gm(x− y)f(y)dy

is a singular Calderon-Zygmund operator. Here and later we assume that the function f is

defined in Rn, also this function is continuously extended to the exterior of domain Ω by zero.

The function Dm
xi
Gm(x, y) ∈ C∞(Rn\ {0}) and the function f is homogeneous of order m − n.

Hence D2m
xi
Gm(x, y) is homogeneous of order 2m−n and tends to zero on unit sphere (see [11]).

Then from general theory given in [12] it follows that K is a bounded operator on Lp(R
n) for

1 < p <∞. Moreover, maximal singular operator

K̃f(x) = sup
ε>0

∣∣∣∣∣∣∣
∫

|x−y|>ε

∑
|α|=2m

DαGm(x, y)f(y)dy

∣∣∣∣∣∣∣
is also bounded on Lp(R

n) for 1 < p <∞.

Theorem 4.1. Let Ω ⊂ Rn be a bounded domain with ∂Ω ⊂ C2. Let 1 < p < ∞ and the pair

of functions (φ1, φ2) satisfy the condition

d∫
r

ess
t<s<∞

inf φ1(x, s)s
n
p

t
n
p
+1

dt ≤ C5φ2(x, r), (19)
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where d = sup
x,y∈Ω

|x− y| and constant C5 is independent of x ∈ Ω and r > 0. We assume that

f ∈Mp,φ and function u is a solution of problem (15). There exists a constant C6 which depends

only on n, φ and Ω such that

∥u∥W 2m
p,φ2

(Ω) ≤ C6 ∥f∥Mp,φ1 (Ω) . (20)

Proof. The proof follows from above estimates for the Green function and the inequalities in

[11]. There exists constant C7 which depends only on Ω such that for any x ∈ Ω the following

inequalities hold:

|u(x)|+ |Dxiu(x)| ≤ C7Mf(x), (21)∣∣Dxixju(x)
∣∣ ≤ C7(Kf(x) +Mf(x) + |f(x)|). (22)

Similarly we can prove the following estimates:

|u(x)|+

∣∣∣∣∣∣
∑

|α|≤m

Dα
xi
u(x)

∣∣∣∣∣∣ ≤ C8Mf(x), (23)

∣∣∣∣∣∣
∑

|α|≤2m

Dαu(x)

∣∣∣∣∣∣ ≤ C8(K̃f(x) +Mf(x) + |f(x)|). (24)

Now we need the following auxillary results proved in [3], [17], [18]. �

Lemma 4.1. Let 1 ≤ p < ∞ and let there exist a constant C9 > 0 such that for any x ∈ Rn

and any t > 0

∞∫
r

ess
t<s<∞

inf φ1(x, s)s
n
p

t
n
p
+1

dr ≤ C9φ2(x, r). (25)

Let also T be a sublinear bounded operator in Lp(R
n) for p ∈ (1,∞) which satisfies

|Tf(x)| ≤ C10

∫
Rn

f(y)

|x− y|n
dy, x ̸∈ sup pf. (26)

Then for p > 1 the operator T is bounded from Mp,φ1(R
n) to Mp,φ2(R

n). Moreover, for p > 1

∥Tf∥Mp,φ2 (R
n) ≤ ∥f∥Mp,φ1 (R

n) .

Lemma 4.2. Let 1 ≤ p < ∞ and (φ1, φ2) satisfy the condition (25). Then the operators M

and K are bounded from Mp,φ1(R
n) to Mp,φ2(R

n) for p > 1.

Now we prove Theorem 4.1. From Lemmas 4.1 and 4.2 it follows that the operators M and

K̃ are bounded in Mp,φ(R
n). Therefore, the statement of Theorem 4.1 and estimate (20) are

the immediate consequences of the inequalities (23), (24).
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5. Estimates for the solutions of any higher order uniformly elliptic equation

with smooth coefficients in generalized Morrey spaces

1. Consider the boundary value problem

Lu = f in Ω ,

Bju = ψj on ∂Ω,
(27)

for j = 0, ...,m− 1. The following assumptions hold. The operator

Lu =
∑

|α|≤2m

aα,j(x)D
αu

is uniformly elliptic: there exists a constant γ > 0 such that

γ−1 |ξ|2 ≤
∑
α,j

aα,j(x)ξαξj ≤ γ |ξ|2 , a.e. x ∈ Ω, ∀ξ ∈ Rn ,

aα,j(x) = aj,α(x).

2. The boundary operators

Bj =
∑

|β|≤mj

bjβD
β, for j = 0, m− 1

satisfy the complementing condition relative to L (see the complementing condition on page 663

of [2].

3. Let l1 > max
j

(2m−mj) and l0 = max
j

(2m−mj). The coefficients aαj belong to C l1+1(Ω)

and the coefficients bjβ belong to C l1+1(∂Ω).

4. The boundary ∂Ω belongs to C l1+2m+1.

5. f ∈Mp,φ(Ω) with 1 < p <∞ and φ : Ω×R+ → R+ is measurable.

Theorem 5.1. Let us consider the boundary value problem (27) with the conditions (1)-(5) and

also the conditions of Theorem 4.1. Then there exists a constant C7 which depends only on n, φ

and Ω such that

∥u∥W 2m
p,φ2(Ω)

≤ C7 ∥f∥Mp,φ1(Ω)
. (28)

The proof of Theorem 5.1 is similar to the one of Theorem 4.1.
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