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SOME FAMILIES OF MITTAG-LEFFLER TYPE FUNCTIONS AND

ASSOCIATED OPERATORS OF FRACTIONAL CALCULUS

(SURVEY)

H.M. SRIVASTAVA1,2

Abstract. Our main objective in this survey-cum-expository article is essentially to present a

review of some recent developments involving various classes of the Mittag-Leffler type functions

which are associated with several family of generalized Riemann-Liouville and other related

fractional derivative operators. Specifically, we consider various compositional properties, which

are associated with the Mittag-Leffler type functions and the Hardy-type inequalities for a

certain generalized fractional derivative operator. We also present solutions of many different

classes of fractional differential equations with constant coefficients and variable coefficients and

some general Volterra-type differintegral equations in the space of Lebesgue integrable functions

as well as a number of interesting particular cases of these general solutions and certain recently

investigated fractional kinetic differintegral equations.
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1. Introduction, definitions and preliminaries

During the past three decades or so, the subject of fractional calculus (that is, calculus

of integrals and derivatives of any arbitrary real or complex order) has gained considerable

popularity and importance, which is due mainly to its demonstrated applications in numerous

seemingly diverse and widespread fields of science and engineering. It does indeed provide several

potentially useful tools for solving differential and integral equations, and various other problems

involving special functions of mathematical physics as well as their extensions and generalizations

in one and more variables. In a wide variety of applications of fractional calculus, one requires

fractional derivatives of different (and, occasionally, ad hoc) kinds (see, for example, [12] to [17],

[26], [27], [33], [34], [40], [44], [47], [49] and [50]). Differentiation and integration of fractional

order are traditionally defined by the right-sided Riemann-Liouville fractional integral operator

Ipa+ and the left-sided Riemann-Liouville fractional integral operator Ipa−, and the corresponding

Riemann-Liouville fractional derivative operators Dp
a+ and Dp

a−, as follows (see, for example, [8,

Chapter 13], [22, pp. 69–70] and [32]):

(
Iµa+f

)
(x) =

1

Γ (µ)

∫ x

a

f (t)

(x− t)1−µ dt
(
x > a; ℜ (µ) > 0

)
, (1.1)
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(
Iµa−f

)
(x) =

1

Γ (µ)

∫ a

x

f (t)

(t− x)1−µ dt
(
x < a; ℜ (µ) > 0

)
(1.2)

and (
Dµ

a±f
)
(x) =

(
± d

dx

)n (
In−µ
a± f

)
(x)

(
ℜ (µ) ≥ 0; n = [ℜ (µ)] + 1

)
, (1.3)

where the function f is locally integrable, ℜ (µ) denotes the real part of the complex number

µ ∈ C and [ℜ (µ)] means the greatest integer in ℜ (µ).

An interesting family of generalized Riemann-Liouville fractional derivatives of order α (0 <

α < 1) and type β (0 ≤ β ≤ 1) were introduced recently as follows (see [12], [13] and [14]; see

also [16], [17] and [33]).

Definition 1.1. The right-sided fractional derivative Dα,β
a+ and the left-sided fractional derivative

Dα,β
a− of order α (0 < α < 1) and type β (0 ≤ β ≤ 1) with respect to x are defined by(

Dα,β
a± f

)
(x) =

(
±I

β(1−α)
a±

d

dx

(
I
(1−β)(1−α)
a± f

))
(x) , (1.4)

where it is tacitly assumed that the second member of (1.4) exists. Obviously, this generalization

(1.4) yields the classical Riemann-Liouville fractional derivative operator when β = 0. Moreover,

for β = 1, it leads to the fractional derivative operator introduced by Liouville [24, p. 10], which

is often attributed to Caputo now-a-days and which should more appropriately be referred to as

the Liouville-Caputo fractional derivative. Many authors (see, for example, [26] and [49]) called

the general operators in (1.4) the Hilfer fractional derivative operators. Several applications of

the Hilfer fractional derivative operator Dα,β
a± can indeed be found in [14].

In this survey-cum-expository article, we aim mainly at presenting a brief review of interesting

and potentially useful properties of the aforementioned family of generalized Riemann-Liouville

fractional derivative operators Dα,β
a± of order α and type β (see Definition 1.1 above). In partic-

ular, we consider various compositional properties, which are associated with the Mittag-Leffler

type functions and the Hardy-type inequalities for the generalized fractional derivative operator

Dα,β
a± . By applying some techniques based upon the Laplace transform, we present solutions of

many different classes of fractional differential equations with constant coefficients and variable

coefficients and some general Volterra-type differintegral equations in the space of Lebesgue in-

tegrable functions. We also include various special cases of these general solutions and a brief

discussion about some recently-investigated fractional kinetic equations.

First of all, by using the formulas (1.1) and (1.2) in conjunction with (1.3) when n = 1, the

fractional derivative operator Dα,β
a± can be rewritten in the following form:(

Dα,β
a± f

)
(x) =

(
± I

β(1−α)
a±

(
Dα+β−αβ

a± f
))

(x) . (1.5)

The significant difference between fractional derivatives of different types would become ap-

parent from a closer look at their Laplace transformations. For example, it is found for 0 < α < 1

that (see [12], [13] and [49])

L
[(

Dα,β
0+ f

)
(x)
]
(s) = sαL [f (x)] (s)− sβ(α−1)

(
I
(1−β)(1−α)
0+ f

)
(0+) , (1.6)

(0 < α < 1),

where (
I
(1−β)(1−α)
0+ f

)
(0+)
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is the Riemann-Liouville fractional integral of order (1− β) (1− α) evaluated in the limit as

t → 0+, it being understood (as usual) that (see, for details, [7, Chapters 4 and 5])

L [f (x)] (s) :=

∫ ∞

0
e−sxf (x) dx =: F (s), (1.7)

provided that the defining integral in (1.7) exists.

We now turn to the familiar Mittag-Leffler functions Eµ (z) and Eµ,ν (z) which are defined

(as usual) by means of the following series:

Eµ (z) :=

∞∑
n=0

zn

Γ (µn+ 1)
=: Eµ,1(z)

(
z ∈ C; ℜ(µ) > 0

)
(1.8)

and

Eµ,ν (z) :=
∞∑
n=0

zn

Γ (µn+ ν)

(
z, ν ∈ C; ℜ(µ) > 0

)
, (1.9)

respectively. The Mittag-Leffler functions Eµ (z) and Eµ,ν (z) are natural extensions of the

exponential, hyperbolic and trigonometric functions, since it is easily verified that

E1 (z) = ez, E2

(
z2
)
= cosh z, E2

(
−z2

)
= cos z,

E1,2(z) =
ez − 1

z
and E2,2(z

2) =
sinh z

z
.

For a reasonably detailed account of the various properties, generalizations and applications of

the Mittag-Leffler functions Eµ (z) and Eµ,ν (z), the reader may refer to the recent works by (for

example) Gorenflo et al. [9], Haubold et al. [11] and Kilbas et al. ([20], [21] and [22, Chapter 1]).

The Mittag-Leffler function Eµ (z) given by (1.8) and some of its various generalizations have

only recently been calculated numerically in the whole complex plane (see, for example, [18]

and [36]). By means of the series representation, a generalization of the Mittag-Leffler function

Eµ,ν(z) of (1.9) was introduced by Prabhakar [31] as follows:

Eλ
µ,ν (z) =

∞∑
n=0

(λ)n
Γ (µn+ ν)

zn

n!

(
z, ν, λ ∈ C; ℜ (µ) > 0

)
, (1.10)

where (and throughout our presentation) (λ)ν denotes the familiar Pochhammer symbol or the

shifted factorial, since

(1)n = n! (n ∈ N0 := N ∪ {0}; N := {1, 2, 3, · · · }),

defined (for λ, ν ∈ C and in terms of the familiar Gamma function) by

(λ)ν :=
Γ (λ+ ν)

Γ (λ)
=


1 (ν = 0;λ ∈ C \ {0})

λ (λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N;λ ∈ C) ,

it being assumed conventionally that (0)0 := 1. Clearly, we have the following special cases:

E1
µ,ν (z) = Eµ,ν (z) and E1

µ,1 (z) = Eµ (z) . (1.11)

Indeed, as already observed earlier by Srivastava and Saxena [47, p. 201, Equation (1.6)], the

generalized Mittag-Leffler function Eλ
µ,ν (z) itself is actually a very specialized case of a rather

extensively investigated function pΨq as indicated below (see also [22, p. 45, Equation (1.9.1)]):

Eλ
µ,ν (z) =

1

Γ (λ)
1Ψ1

 (λ, 1) ;

(ν, µ) ;

z

 , (1.12)
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where, and in what follows, pΨq (p, q ∈ N0) or pΨ
∗
q (p, q ∈ N0) denotes the the Fox-Wright)

generalization of the relatively more familiar hypergeometric function pFq (p, q ∈ N0), with p

numerator parameters a1, · · · , ap and q denominator parameters b1, · · · , bq such that

aj ∈ C (j = 1, · · · , p) and bj ∈ C \ Z−
0 (j = 1, · · · , q),

which is defined by (see, for details, [7, p. 183] and [46, p. 21]; see also [22, p. 56], [19, p. 65]

and [45, p. 19])

pΨ
∗
q

 (a1, A1) , · · · , (ap, Ap) ;

(b1, B1) , · · · , (bq, Bq) ;

z


:=

∞∑
n=0

(a1)A1n
· · · (ap)Apn

(b1)B1n
· · · (bq)Bqn

zn

n!

=
Γ (b1) · · ·Γ (bq)

Γ (a1) · · ·Γ (ap)
pΨq

 (a1, A1) , · · · , (ap, Ap) ;

(b1, B1) , · · · , (bq, Bq) ;

z

 (1.13)

(
ℜ(Aj) > 0 (j = 1, · · · , p) ; ℜ(Bj) > 0 (j = 1, · · · , q) ; 1 + ℜ

( q∑
j=1

Bj −
p∑

j=1

Aj

)
≥ 0

)
,

where we have assumed, in general, that

aj , Aj ∈ C (j = 1, · · · , p) and bj , Bj ∈ C (j = 1, · · · , q)

and that the equality in the convergence condition holds true only for suitably bounded values

of |z| given by

|z| < ∇ :=

 p∏
j=1

A
−Aj

j

 ·

 q∏
j=1

B
Bj

j

 .

Various special higher transcendental functions of the Mittag-Leffler and the Fox-Wright types

type are known to play an important rôle in the theory of fractional and operational calculus

and their applications in the basic processes of evolution, relaxation, diffusion, oscillation, and

wave propagation. Just as we have remarked above, the Mittag-Leffler type functions have only

recently been calculated numerically in the whole complex plane (see, for example, [18] and [36];

see also [1] and [29]). Furthermore, several general families of Mittag-Leffler type functions were

investigated and applied recently by Srivastava and Tomovski [49]). Clearly, therefore, we can

deduce the following relationships with the Mittag-Leffler type function E
(a)
κ,ν(s; z) of Barnes [5]:

Eα(z) = lim
s→0

{
E

(a)
α,1(s; z)

}
and Eα,β(z) = lim

s→0

{
E

(a)
α,β(s; z)

}
. (1.14)

More interestingly, we have

lim
κ→0

{
E

(a)
κ,1(s; z)

}
=

1

Γ(ν)
Φ(z, s, a)

in terms of the classical Hurwitz-Lerch zeta function Φ(z, s, a) defined by (cf., e.g., [7, p. 27.

Eq. 1.11 (1)]; see also [41, p. 121, et seq.])

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s
(1.15)

(
a ∈ C \ Z−

0 ; s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1
)
.
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The Hurwitz-Lerch zeta function Φ(z, s, a) defined by (1.15) contains, as its special cases, not

only the Riemann zeta function ζ(s) and the Hurwitz (or generalized) zeta function ζ(s, a):

ζ(s) :=

∞∑
n=1

1

ns
= Φ(1, s, 1) and ζ(s, a) :=

∞∑
n=0

1

(n+ a)s
= Φ(1, s, a) (1.16)

and the Lerch zeta function ℓs(ξ) defined by (see, for details, [7, Chapter I] and [41, Chapter 2])

ℓs(ξ) :=

∞∑
n=1

e2nπiξ

ns
= e2πiξ Φ

(
e2πiξ, s, 1

)
(1.17)

(ξ ∈ R; ℜ(s) > 1) ,

but also such other important functions of Analytic Number Theory as the Polylogarithmic

function (or de Jonquière’s function) Lis(z):

Lis(z) :=

∞∑
n=1

zn

ns
= z Φ(z, s, 1) (1.18)

(
s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1

)
and the Lipschitz-Lerch zeta function (cf. [41, p. 122, Eq. 2.5 (11)]):

ϕ(ξ, a, s) :=

∞∑
n=0

e2nπiξ

(n+ a)s
= Φ

(
e2πiξ, s, a

)
=: L (ξ, s, a) (1.19)

(
a ∈ C \ Z−

0 ; ℜ(s) > 0 when ξ ∈ R \ Z; ℜ(s) > 1 when ξ ∈ Z
)
,

which was first studied by Rudolf Lipschitz (1832-1903) and Matyáš Lerch (1860-1922) in con-

nection with Dirichlet’s famous theorem on primes in arithmetic progressions.

Asymptotic expansions of the Mittag-Leffler type function E
(a)
κ,ν(s; z) and the classical Mittag-

Leffler function Eα(z) defined by (1.8) are discussed by Barnes [5]. Moreover, as already pointed

out categorically by Srivastava et al. [48, p. 503, Eq. (6.3)], the following generalized M -series

was introduced recently by Sharma and Jain [37] by

α,β

pMq(a1, · · · , ap; b1, · · · , bq; z) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

Γ(αk + β)

=
1

Γ(β)
p+1Ψ

∗
q+1

 (a1, 1) , · · · , (ap, 1) , (1, 1);

(b1, 1) , · · · , (bq, 1) , (β, α);
z

 , (1.20)

in which the last relationship exhibits the fact that the so-called generalized M -series is, in fact,

an obvious (rather trivial) variant of the Fox-Wright function pΨ
∗
q defined by (1.13).

A natural unification and generalization of the Fox-Wright function pΨ
∗
q defined by (1.13)

as well as the Hurwitz-Lerch zeta function Φ(z, s, a) defined by (1.15) was indeed accomplished

by introducing essentially arbitrary numbers of numerator and denominator parameters in the

definition (1.15). For this purpose, in addition to the symbol ∇∗ defined by

∇∗ :=

 p∏
j=1

ρ
−ρj
j

 ·

 q∏
j=1

σ
σj

j

 , (1.21)

the following notations will be employed:

∆ :=

q∑
j=1

σj −
p∑

j=1

ρj and Ξ := s+

q∑
j=1

µj −
p∑

j=1

λj +
p− q

2
. (1.22)
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Then the extended Hurwitz-Lerch zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a)

is defined by [48, p. 503, Equation (6.2)] (see also [38] and [42])

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a) :=

∞∑
n=0

p∏
j=1

(λj)nρj

n! ·
q∏

j=1
(µj)nσj

zn

(n+ a)s
(1.23)

(
p, q ∈ N0; λj ∈ C (j = 1, · · · , p); a, µj ∈ C \ Z−

0 (j = 1, · · · , q);

ρj , σk ∈ R+ (j = 1, · · · , p; k = 1, · · · , q);∆ > −1;

when s, z ∈ C; ∆ = −1 and s ∈ C when |z| < ∇∗; ∆ = −1 and ℜ(Ξ) > 1
2 ; when |z| = ∇∗

)
.

For an interesting and potentially useful family of λ-generalized Hurwitz-Lerch zeta functions,

which further extend the multi-parameter Hurwitz-Lerch zeta function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a)

defined by (1.23), was introduced and investigated systematically in a recent paper by Srivas-

tava [39], who also discussed their potential application in Number Theory by appropriately

constructing a presumably new continuous analogue of Lippert’s Hurwitz measure and also con-

sidered some other statistical applications of these families of the λ-generalized Hurwitz-Lerch

zeta functions in probability distribution theory (see also the references to several related earlier

works cited by Srivastava [39]).

Remark 1.1. If we set

s = 0, p 7→ p+ 1 (ρ1 = · · · = ρp = 1; λp+1 = ρp+1 = 1)

and

q 7→ q + 1 (σ1 = · · · = σq = 1; µq+1 = β; σq+1 = α) ,

then (1.23) reduces at once to the M -series in (1.20).

Finally, we recall that a Laplace transform formula for the generalized Mittag-Leffler function

Eλ
µ,ν(z) was given by Prabhakar [31] as follows:

L
[
xν−1Eλ

µ,ν (ωx
µ)
]
(s) =

sλµ−ν

(sµ − ω)λ
(1.24)(

λ, µ, ω ∈ C; ℜ (ν) > 0; ℜ (s) > 0;
∣∣∣ ω
sµ

∣∣∣ < 1
)
.

Prabhaker [31] also introduced the following fractional integral operator:(
Eλ

µ,ν,ω;a+φ
)
(x) =

∫ x

a
(x− t)ν−1Eλ

µ,ν

(
ω (x− t)µ

)
φ (t) dt (x > a) (1.25)

in the space L(a, b) of Lebesgue integrable functions on a finite closed interval [a, b] (b > a) of

the real line R given by

L(a, b) =

{
f : ∥f∥1 =

∫ b

a
|f (x)| dx < ∞

}
, (1.26)

it being tacitly assumed (throughout the present investigation) that, in situations such as those

occurring in (1.25) and in conjunction with the usages of the definitions in (1.3), (1.4) and (1.5),
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a in all such function spaces as (for example) the function space L(a, b) coincides precisely with

the lower terminal a in the integrals involved in the definitions (1.3), (1.4) and (1.5).

The fractional integral operator (1.25) was investigated earlier by Kilbas et al. [20] and its

generalization involving a family of more general Mittag-Leffler type functions than Eλ
µ,ν(z) was

studied recently by Srivastava and Tomovski [49].

2. The Mittag-Leffler type functions: basic properties and relationships

Here, in this section, we present several continuity properties of the generalized fractional

derivative operator Dα,β
a+ . Each of the following results (Lemma 2.1 as well as Theorems 2.1

and 2.2) are easily derivable by suitably specializing the corresponding general results proven

recently by Srivastava and Tomovski [49].

Lemma 2.1. (see [49]). The following fractional derivative formula holds true:(
Dα,β

a+

[
(t− a)ν−1

])
(x) =

Γ (ν)

Γ (ν − α)
(x− a)ν−α−1 (2.1)(

x > a; 0 < α < 1; 0 ≤ β ≤ 1; ℜ (ν) > 0
)
.

Theorem 2.1. (see [49]).The following relationship holds true:(
Dα,β

a+

[
(t− a)ν−1Eλ

µ,ν [ω (t− a)µ]
])

(x) = (x− a)ν−α−1Eλ
µ,ν−α [ω (x− a)µ] (2.2)(

x > a; 0 < α < 1; 0 ≤ β ≤ 1; λ, ω ∈ C; ℜ (µ) > 0; ℜ (ν) > 0
)
.

Theorem 2.2. (see [49]). The following relationship holds true for any Lebesgue integrable

function φ ∈ L (a, b) :

Dα,β
a+

(
Eλ

µ,ν,ω;a+φ
)
= Eλ

µ,ν−α,ω;a+φ (2.3)(
x > a (a = a); 0 < α < 1; 0 ≤ β ≤ 1; λ, ω ∈ C; ℜ (µ) > 0; ℜ (ν) > 0

)
.

In addition to the space L(a, b) given by (1.26), we shall need the weighted Lp-space

Xp
c (a, b) (c ∈ R; 1 ≤ p ≤ ∞) ,

which consists of those complex-valued Lebesgue integrable functions f on (a, b) for which

∥f∥Xp
c
< ∞

with

∥f∥Xp
c
=

(∫ b

a
|tcf(t)|p dt

t

)1/p

(1 ≤ p < ∞) .

In particular, when

c =
1

p
,

the space Xp
c (a, b) coincides with the Lp(a, b)-space, that is,

Xp
1/p(a, b) = Lp(a, b).

We also introduce here a suitable fractional Sobolev spaceWα,p
a+ (a, b) defined, for a closed interval

[a, b] (b > a) in R, by

Wα,p
a+ (a, b) =

{
f : f ∈ Lp (a, b) and Dα

a+f ∈ Lp (a, b) (0 < α ≤ 1)
}
,
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where Dα
a+f denotes the fractional derivative of f of order α (0 < α ≤ 1) Alternatively, in

Theorems 2.3 and 2.4 below, we can make use of a suitable p-variant of the space Lα
a+(a, b)

which was defined, for ℜ(α) > 0, by Kilbas et al. [22, p. 144, Equation (3.2.1)]:

Lα
a+(a, b) =

{
f : f ∈ L(a, b) and Dα

a+f ∈ L(a, b)
(
ℜ(α) > 0

)}
.

See also the notational convention mentioned in connection with (1.26).

Theorem 2.3. (see [50]). For 0 < α < 1 and 0 < β < 1, the operator Dα,β
a+ is bounded in the

space Wα+β−αβ,1
a+ (a, b) and∥∥∥Dα,β

a+

∥∥∥
1
≤ A

∥∥∥Dα+β−αβ
a+

∥∥∥
1

(
A :=

(b− a)β(1−α)

β (1− α) Γ [β (1− α)]

)
. (2.4)

Proof. By applying a known result [32, Equation (2.72)], we find that∥∥∥Dα,β
a+ φ

∥∥∥
1
=
∥∥∥Iβ(1−α)

a+

(
Dα+β−αβ

a+ φ
)∥∥∥

1

≤ (b− a)β(1−α)

β (1− α) Γ [β (1− α)]

∥∥∥Dα+β−αβ
a+ φ

∥∥∥
1
.

�

The weighted Hardy-type inequality for the integral operator Iαa+ is stated as the following

lemma.

Lemma 2.2. (see [22, p. 82]). If 1 < p < ∞ and α > 0, then the integral operator Iα0+ is

bounded from Lp (0,∞) into Xp
1/p−α (0,∞) as follows:(∫ ∞

0
x−αp

∣∣(Iα0+f) (x)∣∣p dx)1/p

≤ Γ (1/p′)

Γ (α+ 1/p)

(∫ ∞

0
|f (x)|p dx

)1/p (
1

p
+

1

p′
= 1

)
.

(2.5)

Applying the last two inequalities to the fractional derivative operator Dα,β
a+ , we get(∫∞

0 x−αp
∣∣∣(Dα,β

0+ f
)
(x)
∣∣∣p dx)1/p

≤ Γ(1/p′)

Γ
(
β(1−α)+1/p

) (∫∞
0

∣∣∣(Dα+β−αβ
0+ f

)
(x)
∣∣∣p dx)1/p (

1
p + 1

p′ = 1
)
.

(2.6)

We thus arrive at the following result.

Theorem 2.4. (see [50]). If 1 < p < ∞, 0 < α < 1 and 0 ≤ β ≤ 1, then the fractional derivative

operator Dα,β
0+ is bounded from Wα+β−αβ,p

0+ (0,∞) into Xp
1/p−α (0,∞) .

3. Families of fractional differintegral equations with constant coefficients

and variable coefficients

The eigenfunctions of the Riemann-Liouville fractional derivatives are defined as the solutions

of the following fractional differential equation:(
Dα

0+f
)
(x) = λf (x) , (3.1)

where λ is the eigenvalue. The solution of (3.1) is given by

f (x) = x1−αEα,α (λx
α) . (3.2)
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More generally, the eigenvalue equation for the fractional derivative Dα,β
0+ of order α and type β

reads as follows: (
Dα,β

0+ f
)
(x) = λf (x) (3.3)

and its solution is given by (see [13, Equation (124)])

f (x) = x(1−β)(1−α)Eα,α+β(1−α) (λx
α) , (3.4)

which, in the special case when β = 0, corresponds to (3.2). A second important special case of

(3.3) occurs when β = 1: (
Dα,1

0+ f
)
(x) = λf (x) . (3.5)

In this case, the eigenfunction is given by

f (x) = Eα (λx
α) . (3.6)

We now divide this section in the following four subsections (see, for details, [50]).

3.1. In this subsection, we assume that

0 < α1 ≤ α2 < 1, 0 ≤ β1 ≤ 1, 0 ≤ β2 ≤ 1 and a, b, c ∈ R

and consider the following fractional differential equation:

a
(
Dα1,β1

0+ y
)
(x) + b

(
Dα2,β2

0+ y
)
(x) + cy (x) = f (x) (3.7)

in the space of Lebesgue integrable functions y ∈ L(0,∞) with the initial conditions:(
I
(1−βi)(1−αi)
0+ y

)
(0+) = ci (i = 1, 2), (3.8)

where, without any loss of generality, we assume that

(1− β1)(1− α1) ≤ (1− β2)(1− α2).

If c1 < ∞, then

c2 = 0 unless (1− β1)(1− α1) = (1− β2)(1− α2).

An equation of the form (3.7) was introduced in [14] for dielectric relaxation in glasses. While

the Laplace transformed relaxation function and the corresponding dielectric susceptibility were

found, its general solution was not given in [14]. We now proceed to find its general solution.

Theorem 3.1. (see [50]). The fractional differential equation (3.7) with the initial conditions

(3.8) has its solution in the space L (0,∞) given by

y (x) =
1

b

∞∑
m=0

(
−a

b

)m [
ac1x

(α2−α1)m+α2+β1(1−α1)−1Em+1
α2,(α2−α1)m+α2+β1(1−α1)

(
−c

b
xα2

)
+ bc2x

(α2−α1)m+α2+β2(1−α2)−1Em+1
α2,(α2−α1)m+α2+β2(1−α2)

(
−c

b
xα2

)
+
(
Em+1

α2,(α2−α1)m+α2,− c
b
;0+f

)(
−c

b
xα2

)]
. (3.9)

Proof. Our demonstration of Theorem 5 is based upon the Laplace transform method. Indeed,

if we make use of the notational convention depicted in (1.7) and the Laplace transform formula

(1.6), by applying the operator L to both sides of (3.7), it is easily seen that

Y (s) = ac1
sβ1(α1−1)

asα1 + bsα2 + c
+ bc2

sβ2(α2−1)

asα1 + bsα2 + c
+

F (s)

asα1 + bsα2 + c
.
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Furthermore, since

sβi(αi−1)

asα1 + bsα2 + c
=

1

b

(
sβi(αi−1)

sα2 + c
b

) 1

1 + a
b

(
sα1

sα2+ c
b

)
 =

1

b

∞∑
m=0

(
−a

b

)m sα1m+βiαi−βi(
sα2 + c

b

)m+1

= L

[
1

b

∞∑
m=0

(−1)m
(a
b

)m
x(α2−α1)m+α2+βi(1−αi)−1

· Em+1
α2,(α2−α1)m+α2+βi(1−αi)

(
−c

b
xα2

)]
(i = 1, 2)

and

F (s)

asα1 + bsα2 + c
=

1

b

∞∑
m=0

(
−a

b

)m( sα1m(
sα2 + c

b

)m+1 F (p)

)
= L

[
1

b

∞∑
m=0

(
−a

b

)m
·
(
x(α2−α1)m+α2−1Em+1

α2,(α2−α1)m+α2

(
−c

b
xα2

)
∗ f (x)

)]

= L

[
1

b

∞∑
m=0

(−1)m
(a
b

)m (
Em+1

α2,(α2−α1)m+α2,− c
b
;0+f

)(
−c

b
xα2

)]
in terms of the Laplace convolution, by applying the inverse Laplace transform, we get the

solution (3.9) asserted by Theorem 3.1. �

3.2. The next problem is to solve the fractional differential equation (3.7) in the space of

Lebesgue integrable functions y ∈ L(a, b) when

α1 = α2 = α and β1 ̸= β2,

that is, the following fractional differential equation:

a
(
Dα,β1

0+ y
)
(x) + b

(
Dα,β2

0+ y
)
(x) + cy (x) = f (x) (3.10)

under the following initial conditions:(
I
(1−βi)(1−α)
0+ y

)
(0+) = ci (i = 1, 2). (3.11)

We now assume, without loss of generality, that β2 ≤ β1. If c1 < ∞, then

c2 = 0 unless β1 = β2.

Corollary 3.1. (see [50]). The fractional differential equation (3.10) under the initial conditions

(3.11) has its solution in the space L (0,∞) given by

y (x) =

(
ac1
a+ b

)
xβ1+α(1−β1)−1Eα,β1+α(1−β1)

(
− c

a+ b
xα
)

+

(
bc2
a+ b

)
xβ2+α(1−β2)−1Eα,β2+α(1−β2)

(
− c

a+ b
xα
)

+

(
1

a+ b

)(
E1

α,1,− c
a+b

;0+f
)
(x) . (3.12)

Proof. Our proof of Corollary 3.1 is much akin to that of Theorem 3.1. We choose to omit the

details involved (see [50]). �
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3.3. Let

0 < α1 ≤ α2 ≤ α3 < 1 and 0 ≤ βi ≤ 1 (i = 1, 2, 3; a, b, c, e ∈ R).

Consider the following fractional differential equation:

a
(
Dα1,β1

0+ y
)
(x) + b

(
Dα2,β2

0+ y
)
(x) + c

(
Dα3,β3

0+ y
)
(x) + ey (x) = f (x) (3.13)

in the space of Lebesgue integrable functions y ∈ L(a, b) with the initial conditions given by(
I
(1−βi)(1−αi)
0+ y

)
(0+) = ci (i = 1, 2, 3). (3.14)

Without loss of generality, we assume that

(1− β1)(1− α1) ≤ (1− β2)(1− α2) ≤ (1− β3)(1− α3).

If c1 < ∞, then

c2 = 0 unless (1− β1)(1− α1) = (1− β2)(1− α2)

and

c3 = 0 unless (1− β1)(1− α1) = (1− β2)(1− α2) = (1− β3)(1− α3).

Hilfer [14] observed that a particular case of the fractional differential equation (3.13) when

α1 = 1, βi = 1 (i = 1, 2, 3), e = 1 and f (x) = 0

describes the process of dielectric relaxation in glycerol over 12 decades in frequency.

Theorem 3.2. (see [50]). The fractional differential equation (3.13) with the initial conditions

(3.14) has its solution in the space L (0,∞) given by

y (x) =

∞∑
m=0

(−1)m

cm+1

m∑
k=0

(
m

k

)
akbm−kx(α3−α2)m+(α2−α1)k+α3−1

·
[
ac1x

β1(1−α1)Eα3,(α3−α2)m+(α2−α1)k+α3+β1(1−α1)

(
−e

c
xα3

)
+ bc2x

β2(1−α2)Eα3,(α3−α2)m+(α2−α1)k+α3+β2(1−α2)

(
−e

c
xα3

)
+ cc3x

β3(1−α3)Eα3,(α3−α2)m+(α2−α1)k+α3+β3(1−α3)

(
−e

c
xα3

)]
+

∞∑
m=0

(−1)m

cm+1

m∑
k=0

(
m

k

)
akbm−k

(
Em+1

α3,(α3−α2)m+(α2−α1)k+α3
f
)(

−e

c
xα3

)
. (3.15)

Proof. Making use of above-demonstrated technique based upon the Laplace and the inverse

Laplace transformations once again, it is not difficult to deduce the solution (3.15) just as we

did in our proof of Theorem 3.1. �

3.4. Let

0 < α < 1 and 0 ≤ βi ≤ 1 (i = 1, 2, 3).

In the space of Lebesgue integrable functions y ∈ L(0,∞), we consider special case of the

fractional differential equation (3.13) when

α1 = α2 = α3 = α.

a
(
Dα,β1

0+ y
)
(x) + b

(
Dα,β2

0+ y
)
(x) + c

(
Dα,β3

0+ y
)
(x) + ey (x) = f (x) (3.16)

under the initial conditions:(
I
(1−βi)(1−α)
0+ y

)
(0+) = ci (i = 1, 2, 3). (3.17)
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We assume, without loss of generality, that β3 ≤ β2 ≤ β1. If c1 < ∞, then

c2 = 0 unless β1 = β2

and

c3 = 0 unless β1 = β2 = β3.

We are thus led fairly easily to the following consequence of Theorem 3.2.

Corollary 3.2. (see [50]). The fractional differential equation (3.16) with the initial conditions

(3.17) has its solution in the space L (0,∞) given by

y (x) =

(
ac1

a+ b+ c

)
xβ1+α(1−β1)−1Eα,β1+α(1−β1)

(
− e

a+ b+ c
xα
)

+

(
bc2

a+ b+ c

)
xβ2+α(1−β2)−1Eα,β2+α(1−β2)

(
− e

a+ b+ c
xα
)

+
(
E1

α,1,− e
a+b+c

;0+f
)
(x) . (3.18)

Remark 3.1. Podlubny [30] used the Laplace transform method in order to give an explicit so-

lution for an arbitrary fractional linear ordinary differential equation with constant coefficients

involving Riemann-Liouville fractional derivatives in series of multinomial Mittag-Leffler func-

tions.

3.5. Kilbas et al. [22] used the Laplace transform method to derive an explicit solution for the

following fractional differential equation with variable coefficients:

x
(
Dα

0+y
)
(x) = λy (x) (x > 0, λ ∈ R; α > 0; l − 1 < α ≤ l; l ∈ N \ {1}) . (3.19)

They proved that the differential equation (3.19) with 0 < α < 1 is solvable and that its solution

is given by (see, for details, [22])

y (x) = cxα−1 ϕ

(
α− 1, α;− λ

1− α
xα−1

)
,

where (see also Section 1)

ϕ = 0Ψ1

is the Wright function defined by the following series [22, p. 54]:

ϕ (α, β; z) =
∞∑
k=0

1

Γ (αk + β)

zk

k!
(α, β, z ∈ C)

and c is an arbitrary real constant.

In the space of Lebesgue integrable functions y ∈ L (0,∞) , we consider the following more

general fractional differential equation than (3.19):

x
(
Dα,β

0+ y
)
(x) = λy (x) (x > 0; λ ∈ R; 0 < α < 1; 0 ≤ β ≤ 1)) (3.20)

under the initial condition: (
I
(1−β)(1−α)
0+ y

)
(0+) = c1. (3.21)
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Theorem 3.3. (see [50]). The fractional differential equation (3.20) with the initial condition

(3.21) has its solution in the space L(0,∞) given by

y (x) = c1βx
(α−1)(1−β)

∞∑
n=0

(
λ

1−α xα−1
)n

n! (β − n)
ϕ

(
α− 1, (β − n) (1− α) + α,

λ

α− 1
xα−1

)
+ c2x

α−1ϕ

(
α− 1, α,

λ

α− 1
xα−1

)
, (3.22)

where c1 and c2 are arbitrary constants.

Proof. We first apply the Laplace transform operator L to each member of the fractional differ-

ential equation (3.22) and use the special case n = 1 of the following formula [7, p. 129, Entry

4.1 (6)]:
∂n

∂sn
(
L [f(x)] (s)

)
= (−1)n L [xnf (x)] (s) (n ∈ N) . (3.23)

We thus find from (3.20) and (3.23) that

∂

∂s

(
sαY (s)− c1s

β(α−1)
)
= −λY (s) ,

which leads us to the following ordinary linear differential equation of the first order:

Y ′ (s) +

(
α

s
+

λ

sα

)
Y (s)− c1β (α− 1) sβ(α−1)−α−1 = 0.

Its solution is given by

Y (s) =
1

sα
e(

λ
α−1)s

1−α
(
c2 + c1β (α− 1)

∫ s

0
xβ(α−1)−1e−

λ
α−1

x1−α

dx

)
, (3.24)

where c1 and c2 are arbitrary constants.

Upon expanding the exponential function in the integrand of (3.24) in a series, if we use term-

by-term integration in conjunction with the above Laplace transform method, we eventually

arrive at the solution (3.22) asserted by Theorem 3.3. �

4. Solution of Volterra type fractional differintegral equations

4.1. Recently, Al-Saqabi and Tuan [3] made use of an operational method to solve a general

Volterra-type differintegral equation of the form:

(
Dα

0+f
)
(x) +

a

Γ (ν)

∫ x

0
(x− t)ν−1 f (t) dt = g (x)

(
ℜ (α) > 0; ℜ (ν) > 0

)
, (4.1)

where a ∈ C and g ∈ L (0, b) (b > 0). Here, in this subsection, we consider the following

general class of differintegral equations of the Volterra type involving the generalized fractional

derivative operators:

(
Dα,µ

0+ f
)
(x) +

a

Γ (ν)

∫ x

0
(x− t)ν−1 f (t) dt = g (x) (4.2)(

0 < α < 1; 0 ≤ µ ≤ 1; ℜ (ν) > 0
)

in the space of Lebesgue integrable functions f ∈ L (0,∞) with the initial condition:(
I
(1−µ)(1−α)
0+ f

)
(0+) = c. (4.3)
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Theorem 4.1. (see [50]). The fractional differintegral equation (4.2) with the initial condition

(4.3) has its solution in the space L (0,∞) given by

f (x) = cxα−µ(α−1)−1Eα+ν,α−µ(α−1)

(
−axα+ν

)
+
(
E1

α+ν,α,−a;0+g
)
(x) , (4.4)

where c is an arbitrary constant.

Proof. By applying the Laplace transform operator L to both sides of (4.2) and using the formula

(1.6), we readily get

F (s) = c
sµ(α−1)+ν

sα+ν + a
+

sν

sα+ν + a
G (s) ,

which, in view of the Laplace transform formula (1.24) and Laplace convolution theorem, yields

F (s) = cL
[
xα−µ(α−1)−1Eα+ν,α−µ(α−1)

(
−axα+ν

)]
(s)

+ L
[(
xα−1Eα+ν,α

(
−axα+ν

))
∗ g (x)

]
(s) .

The solution (4.4) asserted by Theorem 4.1 would now follow by appealing to the inverse Laplace

transform to each member of this last equation. �

We next consider some interesting illustrative examples of the solution given by (4.4).

Example 1. If we put

g (x) = xµ−1

in Theorem 4.1 and apply the special case of the following integral formula when γ = 1 (see

[15]): ∫ x

0
(x− t)α−1Eγ

ρ,α

(
ω (x− t)ρ

)
tµ−1 dt = Γ (µ)xα+µ−1Eγ

ρ,α+µ (ωx
ρ) , (4.5)

we can deduce a particular case of the solution (4.4) given by Corollary 4.1.

Corollary 4.1. (see [50]). The following fractional differintegral equation:(
Dα,µ

0+ f
)
(x) +

a

Γ (ν)

∫ x

0
(x− t)ν−1 f (t) dt = xµ−1 (4.6)(

0 < α < 1; 0 ≤ µ ≤ 1; ℜ (ν) > 0
)

with the initial condition (4.3) has its solution in the space L (0,∞) given by

f(x) = xα−µ(α−1)−1
[
cEα+ν,α−µ(α−1)

(
−axα+ν

)
+ Γ (µ)xαµEα+ν,α+µ

(
−axα+ν

)]
. (4.7)

Example 2. If, in Theorem 8, we put

g (x) = xµ−1Eα+ν,µ

(
−axα+ν

)
and apply the special case of the following integral formula when γ = σ = 1 (see [49]):∫ x

0
(x− t)µ−1Eγ

ρ,µ

(
ω (x− t)ρ

)
tν−1Eσ

ρ,ν (ωt
ρ) dt = xµ+ν−1Eγ+σ

ρ,µ+ν (ωx
ρ) , (4.8)

we get another particular case of the solution (4.4) given by Corollary 4.2 below.

Corollary 4.2. (see [50]). The following fractional differintegral equation:(
Dα,µ

0+ f
)
(x) +

a

Γ (ν)

∫ x

0
(x− t)ν−1 f (t) dt = xµ−1Eα+ν,µ

(
−axα+ν

)
(4.9)(

0 < α < 1; 0 ≤ µ ≤ 1; ℜ (ν) > 0
)

with the initial condition (4.3) has its solution in the space L (0,∞) given by

f (x) = xα−µ(α−1)−1
[
cEα+ν,α−µ(α−1)

(
−axα+ν

)
+ xαµE2

α+ν,α+µ

(
−axα+ν

)]
, (4.10)
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where c is an arbitrary constant.

Example 3. If we put

g (x) = xβ+ν−1Eα+ν,β+ν

(
−bxα+ν

)
and apply the following integral formula (see [50]):∫ x

0
(x− t)α−1Eα+ν,α

(
−a (x− t)α+ν) tβ+ν−1Eα+ν,β+ν

(
−btα+ν

)
dt

=
Eα+ν,β (−bxα+ν)− Eα+ν,β (−axα+ν)

a− b
xβ−1 (a ̸= b) , (4.11)

we get yet another particular case of the solution (4.4) given by Corollary 4.3.

Corollary 4.3. (see [50]). The following fractional differintegral equation:(
Dα,µ

0+ f
)
(x) +

a

Γ (ν)

∫ x

0
(x− t)ν−1 f (t) dt = xβ+ν−1Eα+ν,β+ν

(
−bxα+ν

)
(4.12)

(
0 < α < 1; 0 ≤ µ ≤ 1; ℜ (ν) > 0

)
with the initial condition (4.3) has its solution in the space L (0,∞) given by

f (x) = cxα−µ(α−1)−1Eα+ν,α−µ(α−1)

(
−axα+ν

)
+

Eα+ν,β (−bxα+ν)− Eα+ν,β (−axα+ν)

a− b
xβ−1 (a ̸= b) , (4.13)

where c is an arbitrary constant.

4.2. Kilbas et al. [18] established the explicit solution of the Cauchy-type problem for the

following fractional differential equation:(
Dα

a+f
)
(x) = λ

(
Eγ

ρ,α,ν;a+f
)
(x) + g (x) (a ∈ C; g ∈ L [0, b]) (4.14)

in the space of Lebesgue integrable functions f ∈ L (0,∞) with the initial conditions:(
Dα

a+f
)
(a+) = bk

(
bk ∈ C (k = 1, · · · , n)

)
. (4.15)

We here consider the following more general Volterra-type fractional differintegral equation:

(
Dα,µ

0+ f
)
(x) = λ

(
Eγ

ρ,α,ν;0+f
)
(x) + g (x) (4.16)

in the space of Lebesgue integrable functions f ∈ L (0,∞) with initial condition:(
I
(1−µ)(1−α)
0+ f

)
(0+) = c. (4.17)

Theorem 4.2. (see [50]). The fractional differintegral equation (4.16) with the initial condition

(4.17) has its solution in the space L (0,∞) given by

f (x) = c
∞∑
k=0

λkx2αk+α+µ−µα−1Eγk
ρ,2αk+α+µ−µα (νx

ρ)

+
∞∑
k=0

λk
(
Eγk

ρ,2αk+α,ν;0+g
)
(x) , (4.18)

where c is an arbitrary constant.
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Proof. By taking the Laplace transforms on both sides of (4.16), we get

F (s) = c
sµ(α−1)

sα − λ
[

sργ−α

(sρ−ν)γ

] + G (s)

sα − λ
[

sργ−α

(sρ−ν)γ

] . (4.19)

On the other hand, in light of (1.24), it is not difficult to see that

sµ(α−1)

sα − λ
[

sργ−α

(sρ−ν)γ

] = L

( ∞∑
k=0

λkx2αk+α+µ−µα−1Eγk
ρ,2αk+α+µ−µα (νx

ρ)

)
and

G (s)

sα − λ
[

sργ−α

(sρ−ν)γ

] = L

[( ∞∑
k=0

λkx2αk+α−1Eγk
ρ,2αk+α (νx

ρ)

)
∗ g (x)

]
.

Upon substituting these last two relations into (4.19), if we apply the inverse Laplace transforms,

we arrive at the solution (4.18) asserted by Theorem 4.2. The details involved are being omitted

here (see also [50]). �

Each of the following particular cases of Theorem 4.2 are worthy of note here.

Example 4. If we put

g (x) = xµ−1

and use the integral formula (4.5), we get the following particular case of the solution (4.18).

Corollary 4.4. (see [50]). The following fractional differintegral equation:(
Dα,µ

0+ f
)
(x) = λ

(
Eγ

ρ,α,ν;0+f
)
(x) + xµ−1 (4.20)(

0 < α < 1; 0 ≤ µ ≤ 1; ℜ (ν) > 0
)

with the initial condition (4.17) has its solution in the space L (0,∞) given by

f (x) = xα+µ−µα−1[c
∞∑
k=0

(
λx2α

)k
Eγk

ρ,2αk+α+µ−µα (νx
ρ)

+ Γ (µ)xµα
∞∑
k=0

(
λx2α

)k
Eγk

ρ,2αk+α+µ (νx
ρ)]. (4.21)

where c is an arbitrary constant.

Example 5. If we put

g (x) = cxµ−µα−1Eρ,µ−µα (νx
ρ)

and use the integral formula (4.8), we get the following particular case of the solution (4.18).

Corollary 4.5. (see [50]). The following fractional differintegral equation:(
Dα,µ

0+ f
)
(x) = λ

(
Eγ

ρ,α,ν;0+f
)
(x) + cxµ−µα−1Eρ,µ−µα (νx

ρ) (4.22)(
0 < α < 1; 0 ≤ µ ≤ 1; ℜ (ν) > 0

)
with the initial condition (4.17) has its solution in the space L (0,∞) given by

f (x) = c

∞∑
k=0

λkx2αk+α+µ−µα−1
[
Eγk

ρ,2αk+α+µ−µα (νx
ρ) + Eγk+1

ρ,2αk+α+µ−µα (νx
ρ)
]
, (4.23)

where c is an arbitrary constant.
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5. A general family of fractional kinetic differintegral equations

Fractional kinetic equations have gained popularity during the past decade or so due mainly to

the discovery of their relation with the CTRW-theory in [16]. These equations are investigated

in order to determine and interpret certain physical phenomena which govern such processes as

diffusion in porous media, reaction and relaxation in complex systems, anomalous diffusion, and

so on (see, for example, [12] and [13]).

In a recent investigation by Saxena and Kalla [35] (see also references to many closely-related

works cited in [35]), the following fractional kinetic equation was considered [35, p. 506, Equation

(2.1)]:

N(t)−N0 f(t) = −cν
(
Iν0+N

)
(t)

(
ℜ(ν) > 0

)
, (5.1)

where N(t) denotes the number density of a given species at time t, N0 = N(0) is the number

density of that species at time t = 0, c is a constant and (for convenience) f ∈ L(0,∞), it being

tacitly assumed that f(0) = 1 in order to satisfy the initial condition N(0) = N0. By applying

the Laplace transform operator L to each member of (5.1), we readily obtain

L[N(t)](s) = N0

(
F (s)

1 + cνs−ν

)
= N0

( ∞∑
k=0

(−cν)k s−kν

)
F (s)

(∣∣∣c
s

∣∣∣ < 1
)
. (5.2)

Remark 5.1. In view of the fact that

L
[
tµ−1

]
(s) =

Γ(µ)

sµ
(
ℜ(s) > 0; ℜ(µ) > 0

)
, (5.3)

it is not possible to compute the inverse Laplace transform of s−kν (k ∈ N0) by setting µ =

kν in (5.3), simply because the condition ℜ(µ) > 0 would obviously be violated when k = 0.

Consequently, the claimed solution of the fractional kinetic equation (5.1) by Saxena and Kalla

[35, p. 506, Equation (2.2)] should be corrected to read as follows:

N(t) = N0

(
f(t) +

∞∑
k=1

(−cν)k

Γ(kν)

(
tkν−1 ∗ f(t)

))
(5.4)

or, equivalently,

N(t) = N0

(
f(t) +

∞∑
k=1

(−cν)k
(
Ikν0+f

)
(t)

)
, (5.5)

where we have made use of the following relationship between the Laplace convolution and the

Riemann-Liouville fractional integral operator
(
Iµ0+f

)
(x) defined by (1.1) with a = 0:

tkν−1 ∗ f(t) :=
∫ t

0
(t− τ)kν−1 f(τ)dτ =: Γ(kν)

(
Ikν0+f

)
(t) (5.6)

(
k ∈ N; ℜ(ν) > 0

)
.

Remark 5.2. The solution (5.5) would provide the corrected version of the obviously erroneous

solution of the fractional kinetic equation (5.1) given by Saxena and Kalla [35, p. 508, Equation

(3.2)] by applying a technique which was employed earlier by Al-Saqabi and Tuan [3] for solving

fractional differeintegral equations.
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In our conclusion of this section, we choose to consider the following general family of fractional

kinetic differintegral equations:

a
(
Dα,β

0+ N
)
(t)−N0 f(t) = b

(
Iν0+N

)
(t) (5.7)

under the initial condition: (
I
(1−β)(1−α)
0+ f

)
(0+) = c, (5.8)

where a, b and c are constants and f ∈ L(0,∞).

By suitably making use of the Laplace transform method as in our demonstrations of the

results proven in the preceding sections, we can obtain the following explicit solution of (5.7)

under the initial condition (5.8).

Theorem 5.1. (see [50]). The fractional kinetic differintegral equation (5.7) with the initial

condition (5.8) has its explicit solution given by

N(t) =
N0

a

∞∑
k=0

(
b

a

)k
(
tα+k(ν+α)−1 ∗ f(t)

)
Γ
(
α+ k(ν + α)

)
+ c

∞∑
k=0

(
b

a

)k tα−β(1−α)+k(ν+α)−1

Γ
(
α− β(1− α) + k(ν + α)

) (a ̸= 0) (5.9)

or, equivalently, by

N(t) =
N0

a

∞∑
k=0

(
b

a

)k (
I
α+k(ν+α)
0+ f

)
(t)

+ c
∞∑
k=0

(
b

a

)k tα−β(1−α)+k(ν+α)−1

Γ
(
α− β(1− α) + k(ν + α)

) (a ̸= 0), (5.10)

where a, b and c are constants and f ∈ L(0,∞).

The case of the explicit solution of the fractional kinetic differintegral equation (5.7) with the

initial condition (5.8) when b ̸= 0 can be considered similarly. Several illustrative examples of

Theorem 5.1 involving some appropriately-chosen special values of the function f(t) can also be

derived fairly easily. We choose to leave the details involved in these derivations as an exercise

for the interested reader.

6. Further observations and concluding remarks

First of all, we observe that an interesting and potentially useful family of λ-generalized

Hurwitz-Lerch zeta functions, which further extend the multi-parameter Hurwitz-Lerch zeta

function

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a)

defined by (1.23), was introduced and investigated systematically in a recent paper by Srivastava

[39]. Among various properties of this and related novel families of the λ-generalized Hurwitz-

Lerch zeta functions, Srivastava [39] presented many potentially useful results involving some

of these λ-generalized Hurwitz-Lerch zeta functions including (for example) their partial differ-

ential equations, new series and Mellin-Barnes type contour integral representations (which are

associated with Fox’s H-function [45]) and several other summation formulas involving them.

Furthermore, Srivastava [39] discussed their potential application in Number Theory by appro-

priately constructing a presumably new continuous analogue of Lippert’s Hurwitz measure and
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also considered some other statistical applications of these families of the λ-generalized Hurwitz-

Lerch zeta functions in probability distribution theory (see also the references to several related

earlier works cited by Srivastava [39]).

The so-called pathway integral transform, that is, the Pδ-transform Pδ[f(t); s], of a function

f(t) (t ∈ R) is a function FP(s) of a complex variable s, which is defined by (see, for example,

[23])

Pδ[f(t); s] = FP(s) :=

∫ ∞

0
[1 + (δ − 1)s]−

t
δ−1 f(t) dt (δ > 1), (6.1)

provided that the sufficient existence conditions are satisfied.

Remark 6.1. By closely comparing the definitions in (1.7) and (6.1), it is easily observed that

the Pδ-transform is essentially the same as the classical Laplace transform with the following

rather trivial parameter change in (1.7) :

s 7→ ln[1 + (δ − 1)s]

δ − 1
(δ > 1). (6.2)

Nevertheless, the current literature on various families of extended Mittag-Leffler type functions

vis-à-vis operators of fractional integrals and fractional derivatives is flooded by investigations

claiming at least implicitly that the Pδ-transform Pδ[f(t); s] defined by (6.1) is a generalization

of the classical Laplace transform defined by (1.7) (see also Remark 6.2 below).

We now turn to another widely-claimed generalization of the familiar Riemann-Liouville frac-

tional integral operator
(
Iµ0+f

)
(x) of order µ, which is defined by (1.1) with a = 0. Indeed, in

all of these many publications which are much too numerous to cite here, the so-called path-

way fractional integral operator
(
P

(η,α,β)
+0 f

)
(x) is defined by (see, for example, [28] and the

references to several earlier works on the subject, which are cited therein)

(
P

(η,α,β)
+0 f

)
(x) := xη

∫ x
(1−α)β

0

(
1− (1− α)βt

x

) η
1−α

f(t) dt

= x−
ηα
1−α

∫ x
(1−α)β

0
[x− (1− α)βt]

η
1−α f(t) dt, (6.3)

where f(t) is suitably constrained Lebesgue integrable function, α < 1, β > 0 and ℜ(η) > 0.

For an obvious change of the variable of integration in (6.3), we set

t =
τ

(1− α)β
and dt =

dτ

(1− α)β
.

We thus find from the definition (6.3) that

(
P

(η,α,β)
+0 f

)
(x) =

x−
ηα
1−α Γ

(
η

1− α
+ 1

)
(1− α)β

· 1

Γ

(
η

1− α
+ 1

) ∫ x

0
(x− τ)(

η
1−α

+1)−1 f

(
τ

(1− α)β

)
dτ,

which would lead us immediately to Remark 6.2 below.

Remark 6.2. The so-called pathway fractional integral in (6.3) is, in fact, essentially the same

as the extensively- and widely-investigated Riemann-Liouville fractional integral in (1.1) with,

of course, some obvious straightforward parameter, variable and notational changes (see also
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Remark 6.1 above). Furthermore, two of the three parameters η, α and β, which are involved in

the definition (6.3), are obviously redundant.

We choose to conclude this presentation by reiterating the fact that the extensively-investigated

and celebrated special function named after the famous Swedish mathematician, Magnus Gustaf

(Gösta) Mittag-Leffter (16 March 1846–07 July 1927), as well as its various extensions and gen-

eralizations including (among others) those that are considered here, have found remarkable

applications in the solutions of a significantly wide variety of problems in the physical, biologi-

cal, chemical, earth and engineering sciences (see, for example, [51]). However, in a presentation

of this modest size, it is naturally hard to justify and elaborate upon the tremendous potential

for applications of all those Mittag-Leffler type functions in one and more variables which have

appeared in the existing literature on the subject. In our presentation here, we have focussed

mainly on the problems and prospects involving some of the Mittag-Leffler type functions in the

areas of variois families of fractional differintegral equations. In many recent investigations (see,

for example, [2], [4], [6], [10], [43], and [52] to [66]), one form or the other of the Mittag-Leffler

type functions (which we have considered in this survey-cum-expository article) have found in-

teresting applications in the solutions of a wide variety of well-known (rather classical) ordinary

as well as partial differential equations of Mathematical Physics and Applied Mathematics when

such differential equations are studied in the context of local fractional calculus (that is, local

fractional integrals and local fractional derivatives).

References

[1] Abramowitz, M., Stegun, I.A., (1965), Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, Tenth Printing, National Bureau of Standards, Applied Mathematics Series, 55, Na-

tional Bureau of Standards, Washington, D.C., 1972; Reprinted by Dover Publications, New York, (see also

[29]).

[2] Ahmad, J., Mohyud-Din, S.T., Srivastava H.M., Yang, X.-J., (2015), Analytic solutions of the Helmholz

and Laplace equations by using local fractional derivative operators, Waves Wavelets Fractals Adv. Anal., 1,

pp.22–26.

[3] Al-Saqabi, B.N., Tuan, V.K., (1996), Solution of a fractional differential equation, Integral Transforms Spec.

Funct., 4, pp.321–326.

[4] Baleanu, D., Srivastava, H.M., Yang, X.-J., (2015), Local fractional variational iteration algorithms for the

parabolic Fokker-Planck equation defined on Cantor sets, Progr. Fract. Different. Appl., 1, pp.1–11.

[5] Barnes, E.W., (1906), The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans.

Roy. Soc. London Ser. A, 206, pp.249–297.

[6] Cattani, C., Srivastava, H.M., Yang, X.-J., (2015), Fractional Dynamics, Emerging Science Publishers (De

Gruyter Open), Berlin and Warsaw.
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